Nonlinear-mode-coupling-induced soliton crystal dynamics in optical microresonators

被引:18
|
作者
Huang, Tianye [1 ,2 ]
Pan, Jianxing [1 ]
Cheng, Zhuo [1 ]
Xu, Gang [3 ]
Wu, Zhichao [1 ]
Du, Taoyuan [4 ]
Zeng, Shuwen [5 ]
Shum, Perry Ping [1 ]
机构
[1] China Univ Geosci Wuhan, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Univ Auckland, Dodd Walls Ctr Photon & Quantum Technol, Dept Phys, Auckland 1142, New Zealand
[4] China Univ Geosci Wuhan, Sch Math & Phys, Wuhan 430074, Peoples R China
[5] Univ Limoges, XLIM Res Inst, CNRS, UMR 7252, F-87060 Limoges, France
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevA.103.023502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dissipative Kerr solitons based on microresonators have wide applications from optical communications to optical ranging for the high-repetition rate and broad bandwidth. Restricted by the bending losses and dispersion control of the optical waveguide, it could be hard to further realize ultrahigh-repetetion rate reaching several terahertz by simply reducing the size of microresonators. Soliton crystals, which completely fill the microresonator with a series of equidistant temporal pulses, can be an effective approach to realize ultrahigh-repetition rate in the common cavity length. In this paper, we investigate the generation of soliton crystals in the presence of nonlinear mode coupling, which can induce a modulation on the background wave and modify the cavity dynamics. Under the condition of suitable wave vector mismatch and nonlinear-coupling-coefficient, high-deterministic perfect soliton crystals can be realized. Besides, the drifting behavior of the soliton crystals is demonstrated to be determined by the match between the wave vector mismatch and nonlinear coupling coefficient. Finally, we successfully observe the recrystallization of the perfect soliton crystals.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Thermo-optical dynamics of a nonlinear GaInP photonic crystal nanocavity depend on the optical mode profile
    Perrier, Karindra
    Greveling, Sebastiaan
    Wouters, Hilbrand
    Rodriguez, Said R. K.
    Lehoucq, Gaelle
    Combrie, Sylvain
    de Rossi, Alfredo
    Faez, Sanli
    Mosk, Allard P.
    OSA CONTINUUM, 2020, 3 (07) : 1879 - 1890
  • [32] INTERNAL DYNAMICS OF A VECTOR SOLITON IN A NONLINEAR-OPTICAL FIBER
    KAUP, DJ
    MALOMED, BA
    TASGAL, RS
    PHYSICAL REVIEW E, 1993, 48 (04): : 3049 - 3053
  • [33] Vector-soliton collision dynamics in nonlinear optical fibers
    Goodman, RH
    Haberman, R
    PHYSICAL REVIEW E, 2005, 71 (05)
  • [34] Soliton dynamics in optical fiber based on nonlinear Schrodinger equation
    Mardi, Harish Abdillah
    Nasaruddin, Nasaruddin
    Ikhwan, Muhammad
    Nurmaulidar, Nurmaulidar
    Ramli, Marwan
    HELIYON, 2023, 9 (03)
  • [35] Soliton-mode proliferation induced by cross-phase modulation of harmonic waves by a dark-soliton crystal in optical media
    Chenui, Eugene Aban
    Dikande, Alain Moise
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (10) : 2681 - 2688
  • [36] Control of the pulse dynamics in a two-mode nonlinear optical guide with strong intermode coupling
    M. S. Adamova
    I. O. Zolotovskii
    D. I. Sementsov
    Journal of Communications Technology and Electronics, 2007, 52 : 573 - 579
  • [37] Control of the pulse dynamics in a two-mode nonlinear optical guide with strong intermode coupling
    Adamova, M. S.
    Zolotovskii, I. O.
    Sementsov, D. I.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2007, 52 (05) : 573 - 579
  • [38] Optical radiation dynamics in optical fibers with nonlinear intermode coupling
    I. O. Zolotovskii
    D. I. Sementsov
    E. I. Barykina
    Optics and Spectroscopy, 2009, 107 : 117 - 121
  • [39] Optical radiation dynamics in optical fibers with nonlinear intermode coupling
    Zolotovskii, I. O.
    Sementsov, D. I.
    Barykina, E. I.
    OPTICS AND SPECTROSCOPY, 2009, 107 (01) : 117 - 121
  • [40] Mode analysis of optical spatial soliton-induced waveguide
    Shanghai Jiaotong Daxue Xuebao, 7 (65-67):