Supereulerian graphs and Chvatal-Erdos type conditions

被引:0
|
作者
Yang, Weihua [1 ]
He, Wei-Hua [2 ]
Li, Hao [2 ]
Deng, Xingchao [3 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[2] Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, France
[3] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
关键词
Supereulerian graphs; Matching number; Chvatal-Erdos condition; Edge-connectivity; EULERIAN SUBGRAPHS; MATCHINGS; CYCLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1972, Chvatal and Erdos showed that the graph G with independence number alpha(G) no more than its connectivity k(G) (i.e. k(G) >= alpha(G)) is hamiltonian. In this paper, we consider a kind of Chvatal and Erdos type condition on edge-connectivity (lambda(G)) and matching number (edge independence number). We show that if lambda(G) >= alpha'(G) - 1, then G is either supereulerian or in a well-defined family of graphs. Moreover, we weaken the condition k(G) >= alpha(G) - 1 in [11] to lambda(G) >= alpha(G) - 1 and obtain the similar characterization on non-supereulerian graphs. We also characterize the graph which contains a dominating closed trail under the assumption lambda(G) >= alpha'(G) - 2.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 50 条
  • [31] A note on minimum degree conditions for supereulerian graphs
    Broersma, HJ
    Xiong, LM
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 35 - 43
  • [32] Nash-Williams-type and Chvatal-type Conditions in One-Conflict Graphs
    Laforest, Christian
    Momege, Benjamin
    SOFSEM 2015: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2015, 8939 : 327 - 338
  • [33] Strengthened Ore conditions for (s, t)-supereulerian graphs
    Lei, Lan
    Li, Xiaoming
    Wu, Yang
    Zhang, Taoye
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2022, 320 : 68 - 80
  • [34] Ore and Erdos type conditions for long cycles in balanced bipartite graphs
    Adamus, Janusz
    Adamus, Lech
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2009, 11 (02): : 57 - 69
  • [35] Supereulerian planar graphs
    Lai, HJ
    Li, DY
    Mao, JZ
    Zhan, MQ
    ARS COMBINATORIA, 2005, 75 : 313 - 331
  • [36] SUPEREULERIAN GRAPHS - A SURVEY
    CATLIN, PA
    JOURNAL OF GRAPH THEORY, 1992, 16 (02) : 177 - 196
  • [37] On Generalizations of Supereulerian Graphs
    Song, Sulin
    ProQuest Dissertations and Theses Global, 2022,
  • [38] Supereulerian graphs, independent sets, and degree-sum conditions
    Chen, ZH
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 73 - 87
  • [39] Supereulerian graphs and matchings
    Lai, Hong-Jian
    Yan, Huiya
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1867 - 1869
  • [40] A characterization of graphs with supereulerian line graphs
    Huang, Yufei
    He, Weihua
    Huang, Guixian
    Lai, Hong-Jian
    Song, Sulin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2020, 5 (01) : 1 - 14