Supereulerian graphs and Chvatal-Erdos type conditions

被引:0
|
作者
Yang, Weihua [1 ]
He, Wei-Hua [2 ]
Li, Hao [2 ]
Deng, Xingchao [3 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[2] Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, France
[3] Tianjin Normal Univ, Coll Math Sci, Tianjin 300387, Peoples R China
关键词
Supereulerian graphs; Matching number; Chvatal-Erdos condition; Edge-connectivity; EULERIAN SUBGRAPHS; MATCHINGS; CYCLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1972, Chvatal and Erdos showed that the graph G with independence number alpha(G) no more than its connectivity k(G) (i.e. k(G) >= alpha(G)) is hamiltonian. In this paper, we consider a kind of Chvatal and Erdos type condition on edge-connectivity (lambda(G)) and matching number (edge independence number). We show that if lambda(G) >= alpha'(G) - 1, then G is either supereulerian or in a well-defined family of graphs. Moreover, we weaken the condition k(G) >= alpha(G) - 1 in [11] to lambda(G) >= alpha(G) - 1 and obtain the similar characterization on non-supereulerian graphs. We also characterize the graph which contains a dominating closed trail under the assumption lambda(G) >= alpha'(G) - 2.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 50 条
  • [11] Chvatal-Erdos Conditions and Almost Spanning Trails
    Lei, Lan
    Li, Xiaomin
    Ma, Xiaoling
    Zhan, Mingquan
    Lai, Hong-Jian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4375 - 4391
  • [12] A CHVATAL-ERDOS TYPE THEOREM FOR PATH-CONNECTIVITY
    Chen, Guantao
    Hu, Zhiquan
    Wu, Yaping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1247 - 1260
  • [13] CHVATAL-ERDOS CONDITIONS FOR 2-CYCLABILITY IN DIGRAPHS
    JACKSON, B
    ORDAZ, O
    ARS COMBINATORIA, 1988, 25 : 39 - 49
  • [14] The Chvatal-Erdos condition for cycles in triangle-free graphs
    Lou, DJ
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 253 - 257
  • [15] The Chvatal-Erdos condition for panconnectivity of triangle-free graphs
    Wei, B
    Zhu, YJ
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 203 - 214
  • [16] On the Chvatal-Erdos triangle game
    Balogh, Jozsef
    Samotij, Wojciech
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [17] Extensions and consequences of Chvatal-Erdos' theorem
    vandenHeuvel, J
    GRAPHS AND COMBINATORICS, 1996, 12 (03) : 231 - 237
  • [18] Chvatal-Erdos condition for hamiltonicity in digraphs
    Guia, C
    Ordaz, O
    ARS COMBINATORIA, 1996, 43 : 272 - 286
  • [19] The Chvatal-Erdos condition for prism-Hamiltonicity
    Ellingham, M. N.
    Nowbandegani, Pouria Salehi
    DISCRETE MATHEMATICS, 2020, 343 (07)