Non-parametric reconstruction of the cosmological jerk parameter

被引:37
|
作者
Mukherjee, Purba [1 ]
Banerjee, Narayan [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Mohanpur 741246, W Bengal, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2021年 / 81卷 / 01期
关键词
BARYON ACOUSTIC-OSCILLATIONS; LUMINOUS RED GALAXIES; HUBBLE PARAMETER; SNE IA; CONSTRAINTS; EXPANSION; UNIVERSE; LAMBDA; GROWTH; FOREST;
D O I
10.1140/epjc/s10052-021-08830-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The cosmological jerk parameter j is reconstructed in a non-parametric way from observational data independent of a fiducial cosmological model. The Cosmic Chronometer data as well as the Supernovae data (the Pantheon compilation) are used for the purpose. The reconstructed values are found to be consistent with the standard Lambda CDM model within the 2 sigma confidence level. The model dependent sets like Baryon Acoustic Oscillation and the CMB Shift data are also included thereafter, which does not significantly help in improving or de-proving the confidence level in favour of Lambda CDM. The deceleration parameter q is also reconstructed from the same data sets. This is used to find the effective equation of state parameter for the model independent datasets only. Lambda CDM model is excluded for some part of the evolution in 1 sigma, but is definitely included in 2 sigma in the domain (0 <= z <= 2.36) of all the reconstructions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Parametric and Non-parametric Encompassing Procedures
    Bontemps, Christophe
    Florens, Jean-Pierre
    Richard, Jean-Francois
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2008, 70 : 751 - 780
  • [32] Non-parametric model structure identification and parametric efficiency in nonlinear state dependent parameter models
    Young, Peter C.
    [J]. 2006 INTERNATIONAL SYMPOSIUM ON EVOLVING FUZZY SYSTEMS, PROCEEDINGS, 2006, : 349 - 354
  • [33] Non-parametric spatial curvature inference using late-Universe cosmological probes
    Dhawan, Suhail
    Alsing, Justin
    Vagnozzi, Sunny
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 506 (01) : L1 - L5
  • [34] Non-Parametric Anthropometric Graph Convolutional Network for Virtual Mannequin Reconstruction
    Xie, Haoyang
    Zhong, Yueqi
    Yu, Zhicai
    Hussain, Azmat
    [J]. IEEE ACCESS, 2020, 8 : 3539 - 3550
  • [35] Non-Parametric Tomographic SAR Reconstruction via Improved Regularized MUSIC
    Hadj-Rabah, Karima
    Schirinzi, Gilda
    Budillon, Alessandra
    Hocine, Faiza
    Belhadj-Aissa, Aichouche
    [J]. REMOTE SENSING, 2023, 15 (06)
  • [36] Performance of non-parametric reconstruction techniques in the late-time universe
    Escamilla-Rivera, Celia
    Said, Jackson Levi
    Mifsud, Jurgen
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (10):
  • [37] Non-parametric reconstruction of distribution functions from observed galactic discs
    Pichon, C
    Thiébaut, E
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 301 (02) : 419 - 434
  • [38] Non-parametric reconstruction of the galaxy lens in PG 1115+080
    Saha, P
    Williams, LLR
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 292 (01) : 148 - 156
  • [39] Rice biophysical parameter retrieval with optical satellite imagery: a comparative assessment of parametric and non-parametric models
    Mansaray, Lamin R.
    Kabba, Victor T. S.
    Yang, Lingbo
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (26) : 13561 - 13578
  • [40] The fusion of parametric and non-parametric hypothesis tests
    Singer, PF
    [J]. FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 780 - 784