Non-Parametric Tomographic SAR Reconstruction via Improved Regularized MUSIC

被引:3
|
作者
Hadj-Rabah, Karima [1 ]
Schirinzi, Gilda [2 ]
Budillon, Alessandra [2 ]
Hocine, Faiza [1 ]
Belhadj-Aissa, Aichouche [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Dept Telecommun, BP 32, Bab Ezzouar 16111, Algeria
[2] Univ Napoli Parthenope, Dipartimento Ingn, I-80143 Naples, Italy
关键词
tomographic synthetic aperture radar (TomoSAR); urban reconstruction; non-parametric estimation; MUSIC method; scree plot; SCATTERERS DETECTION; SELECTION;
D O I
10.3390/rs15061599
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Height estimation of scatterers in complex environments via the Tomographic Synthetic Aperture Radar (TomoSAR) technique is still a valuable research field. The parametric spectral estimation approach constitutes a powerful tool to identify the superimposed scatterers with different complex reflectivities, located at different heights in the same range-azimuth resolution cell. Unfortunately, this approach requires prior knowledge about the number of scatterers for each pixel, which is not possible in practical situations. In this paper, we propose a method that analyzes the scree plot, generated from the spectral decomposition of the multidimensional covariance matrix, in order to estimate automatically the number of scatterers for each resolution cell. In this context, a properly improved regularization step is included during the reconstruction process, transforming the parametric MUSIC estimator into a non-parametric method. The experimental results on two data sets covering high elevation towers, with different facade coating characteristics, acquired by the TerraSAR-X satellite highlighted the effectiveness of the proposed regularized MUSIC for the reconstruction of high man-made structures compared with classical approaches.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Non-parametric reconstruction of growth index via Gaussian processes
    Yin, Zhao-Yu
    Wei, Hao
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (09)
  • [2] Non-parametric reconstruction of growth index via Gaussian processes
    Zhao-Yu Yin
    Hao Wei
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [3] Non-parametric reconstruction of growth index via Gaussian processes
    Zhao-Yu Yin
    Hao Wei
    [J]. Science China(Physics,Mechanics & Astronomy), 2019, 62 (09) : 114 - 123
  • [4] Generalized Parametric Iterative Approach for Tomographic SAR Reconstruction
    Haddad, Nabil
    Bouaraba, Azzedine
    Hadj-Rabah, Karima
    Budillon, Alessandra
    Harkati, Lekhmissi
    Schirinzi, Gilda
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [5] Hierarchical Segmentation of Polarimetric SAR Image via Non-Parametric Graph Entropy
    Bai, Yu
    Dong, Lixia
    Huang, XiaoJing
    Yang, Wen
    Liao, Mingsheng
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [6] Flexible, non-parametric modeling using regularized neural networks
    Allerbo, Oskar
    Jornsten, Rebecka
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (04) : 2029 - 2047
  • [7] Flexible, non-parametric modeling using regularized neural networks
    Oskar Allerbo
    Rebecka Jörnsten
    [J]. Computational Statistics, 2022, 37 : 2029 - 2047
  • [8] Non-Parametric High-Resolution SAR Imaging
    Glentis, George Othon
    Zhao, Kexin
    Jakobsson, Andreas
    Li, Jian
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (07) : 1614 - 1624
  • [9] Non-parametric Source Reconstruction via Kernel Temporal Enhancement for EEG Data
    Torres-Valencia, C.
    Hernandez-Muriel, J.
    Gonzalez-Vanegas, W.
    Alvarez-Meza, A.
    Orozco, A.
    Alvarez, M.
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 443 - 450
  • [10] A comparison of non-parametric spectral estimators for SAR imaging
    Yildirim, I
    Tezel, NS
    Erer, I
    Yazgan, B
    [J]. RAST 2003: RECENT ADVANCES IN SPACE TECHNOLOGIES, PROCEEDINGS, 2003, : 369 - 374