Counting factorisations of monomials over rings of integers modulo N

被引:0
|
作者
Hickman, Jonathan [1 ]
Wright, James [2 ,3 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, JCMB, Kings Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Edinburgh, Sch Math, JCMB, Kings Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
基金
美国国家科学基金会;
关键词
SUMS; SPERBER; DENEF;
D O I
10.5802/jtnb.1079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sharp bound is obtained for the number of ways to express the monomial X-n as a product of linear factors over Z/p(alpha)Z. The proof relies on an induction-on-scale procedure which is used to estimate the number of solutions to a certain system of polynomial congruences. The method also applies to more general systems of polynomial congruences that satisfy a non-degeneracy hypothesis.
引用
收藏
页码:255 / 282
页数:28
相关论文
共 50 条
  • [21] Time-Space Tradeoffs for Counting NP Solutions Modulo Integers
    R. Ryan Williams
    computational complexity, 2008, 17 : 179 - 219
  • [22] The commuting graphs of some subsets in the quaternion algebra over the ring of integers modulo N
    Yangjiang Wei
    Gaohua Tang
    Huadong Su
    Indian Journal of Pure and Applied Mathematics, 2011, 42 : 387 - 402
  • [23] Time-space tradeoffs for counting NP solutions modulo integers
    Williams, R. Ryan
    COMPUTATIONAL COMPLEXITY, 2008, 17 (02) : 179 - 219
  • [24] Secure Computation over Integers Modulo Powers of Two
    Abspoel, Mark
    Cramer, Ronald
    Escudero, Daniel
    ERCIM NEWS, 2021, (126): : 23 - 23
  • [25] The non-zero divisor graph of ring of integers modulo six and the Hamiltonian quaternion over integers modulo two
    Zai, Nur Athirah Farhana Omar
    Sarmin, Nor Haniza
    Khasraw, Sanhan Muhammad Salih
    Gambo, Ibrahim
    Zaid, Nurhidayah
    Journal of Physics: Conference Series, 2021, 1988 (01):
  • [26] Classes of modulo powers in S-integers rings of body of functions
    Car, M
    ACTA ARITHMETICA, 2005, 118 (02) : 149 - 185
  • [27] Clean group rings over localizations of rings of integers
    Li, Yuanlin
    Zhong, Qinghai
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (07)
  • [28] Prime and irreducible elements of the ring of integers modulo n
    Jafari, M.
    Madadi, A.
    MATHEMATICAL GAZETTE, 2012, 96 (536): : 283 - 287
  • [29] IMPRIMITIVE REGULAR ACTION IN THE RING OF INTEGERS MODULO n
    Han, Juncheol
    Lee, Yang
    Park, Sangwon
    CONTEMPORARY RING THEORY 2011, 2012, : 182 - 195
  • [30] Distribution of αn plus β modulo 1 over integers free from large and small primes
    Yau, Kam Hung
    ACTA ARITHMETICA, 2019, 189 (01) : 95 - 107