FLOER HOMOLOGY FOR SYMPLECTOMORPHISM

被引:3
|
作者
Her, Hai-Long [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China
关键词
Floer homology; symplectomorphism; moduli space; virtual cycle; ARNOLD CONJECTURE; MORSE-THEORY;
D O I
10.1142/S0219199709003612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, omega) be a compact symplectic manifold, and phi be a symplectic diffeomorphism on M, we define a Floer-type homology FH*(phi) which is a generalization of Floer homology for symplectic fixed points defined by Dostoglou and Salamon for monotone symplectic manifolds. These homology groups are modules over a suitable Novikov ring and depend only on phi up to a Hamiltonian isotopy.
引用
收藏
页码:895 / 936
页数:42
相关论文
共 50 条