FLOER HOMOLOGY FOR SYMPLECTOMORPHISM

被引:3
|
作者
Her, Hai-Long [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Peoples R China
关键词
Floer homology; symplectomorphism; moduli space; virtual cycle; ARNOLD CONJECTURE; MORSE-THEORY;
D O I
10.1142/S0219199709003612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, omega) be a compact symplectic manifold, and phi be a symplectic diffeomorphism on M, we define a Floer-type homology FH*(phi) which is a generalization of Floer homology for symplectic fixed points defined by Dostoglou and Salamon for monotone symplectic manifolds. These homology groups are modules over a suitable Novikov ring and depend only on phi up to a Hamiltonian isotopy.
引用
收藏
页码:895 / 936
页数:42
相关论文
共 50 条
  • [21] Floer homology and homotopy planes
    Schroer, S
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (02) : 279 - 294
  • [22] An introduction to knot Floer homology
    Manolescu, Ciprian
    PHYSICS AND MATHEMATICS OF LINK HOMOLOGY, 2016, 680 : 99 - 135
  • [23] On knot Floer homology and cabling
    Hedden, Matthew
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 1197 - 1222
  • [24] Floer homology of families I
    Hutchings, Michael
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (01): : 435 - 492
  • [25] Introduction to Heegaard Floer homology
    Gorsky, E. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (01) : 1 - 35
  • [26] Floer homology, dynamics and groups
    Polterovich, L
    MORSE THEORETIC METHODS IN NONLINEAR ANALYSIS AND IN SYMPLECTIC TOPOLOGY, 2006, 217 : 417 - 438
  • [27] Hypercontact structures and Floer homology
    Hohloch, Sonja
    Noetzel, Gregor
    Salamon, Dietmar A.
    GEOMETRY & TOPOLOGY, 2009, 13 : 2543 - 2617
  • [28] INVOLUTIVE BORDERED FLOER HOMOLOGY
    Hendricks, Kristen
    Lipshitz, Robert
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) : 389 - 424
  • [29] A calculus for bordered Floer homology
    Hanselman, Jonathan
    Watson, Liam
    GEOMETRY & TOPOLOGY, 2023, 27 (03) : 823 - 924
  • [30] HOMOCLINIC POINTS AND FLOER HOMOLOGY
    Hohloch, Sonja
    JOURNAL OF SYMPLECTIC GEOMETRY, 2013, 11 (04) : 645 - 701