Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

被引:2
|
作者
Debreu, Laurent [1 ]
Neveu, Emilie [1 ]
Simon, Ehouarn [2 ]
Le Dimet, Francois-Xavier [1 ]
Vidard, Arthur [1 ]
机构
[1] INRIA Grenoble Rhone Alpes, LJK, Grenoble, France
[2] Univ Toulouse, INP, IRIT, Toulouse, France
关键词
variational data assimilation; multigrid methods; preconditioning; transport equation; CONJUGATE GRADIENTS; OPTIMIZATION; SYSTEMS;
D O I
10.1002/qj.2676
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. In a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse-grid correction step. We show that, even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid method. The view of multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale-dependent weighting of the multigrid preconditioner and the usual background-error covariance-matrix based preconditioner is proposed and brings significant improvements.
引用
收藏
页码:515 / 528
页数:14
相关论文
共 50 条
  • [32] Efficient Algebraic Multigrid Preconditioners on Clusters of GPUs
    Hassan, Ambra Abdullahi
    Cardellini, Valeria
    D'Ambra, Pasqua
    di Serafino, Daniela
    Filippone, Salvatore
    PARALLEL PROCESSING LETTERS, 2019, 29 (01)
  • [33] Reducing complexity in parallel algebraic multigrid preconditioners
    De Sterck, H
    Yang, UM
    Heys, JJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 27 (04) : 1019 - 1039
  • [34] Scalable Lazy-update Multigrid Preconditioners
    Rasouli, Majid
    Zala, Vidhi
    Kirby, Robert M.
    Sundar, Hari
    2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [35] Multigrid-in-time preconditioners for KKT systems
    Vuchkov, Radoslav
    Cyr, Eric C.
    Ridzal, Denis
    arXiv,
  • [36] Solvability and numerical solution of variational data assimilation problems
    Shutyaev, V
    SYSTEM MODELING AND OPTIMIZATION, 2005, 166 : 191 - 201
  • [37] Learning Variational Data Assimilation Models and Solvers
    Fablet, R.
    Chapron, B.
    Drumetz, L.
    Memin, E.
    Pannekoucke, O.
    Rousseau, F.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (10)
  • [38] AN ALGEBRAIC-THEORY FOR MULTIGRID METHODS FOR VARIATIONAL-PROBLEMS
    MANDEL, J
    MCCORMICK, S
    RUGE, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (01) : 91 - 110
  • [39] AN ALGEBRAIC STUDY OF A LOCAL MULTIGRID METHOD FOR VARIATIONAL-PROBLEMS
    KOCVARA, M
    APPLIED MATHEMATICS AND COMPUTATION, 1992, 51 (01) : 17 - 41
  • [40] MULTIGRID METHOD FOR NUMERICAL-SOLUTION OF VARIATIONAL-INEQUALITIES
    BELSKII, VG
    DOKLADY AKADEMII NAUK SSSR, 1991, 319 (03): : 523 - 526