Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

被引:2
|
作者
Debreu, Laurent [1 ]
Neveu, Emilie [1 ]
Simon, Ehouarn [2 ]
Le Dimet, Francois-Xavier [1 ]
Vidard, Arthur [1 ]
机构
[1] INRIA Grenoble Rhone Alpes, LJK, Grenoble, France
[2] Univ Toulouse, INP, IRIT, Toulouse, France
关键词
variational data assimilation; multigrid methods; preconditioning; transport equation; CONJUGATE GRADIENTS; OPTIMIZATION; SYSTEMS;
D O I
10.1002/qj.2676
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. In a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse-grid correction step. We show that, even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid method. The view of multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale-dependent weighting of the multigrid preconditioner and the usual background-error covariance-matrix based preconditioner is proposed and brings significant improvements.
引用
收藏
页码:515 / 528
页数:14
相关论文
共 50 条
  • [21] A MULTIGRID METHOD FOR THE SOLUTION OF COMPOSITE MESH PROBLEMS
    Sarraf, S. S.
    Lopez, E. J.
    Rios Rodriguez, G. A.
    Sonzogni, V. E.
    LATIN AMERICAN APPLIED RESEARCH, 2015, 45 (01) : 57 - 63
  • [22] Learning to Optimize Multigrid PDE Solvers
    Greenfeld, Daniel
    Galun, Meirav
    Kimmel, Ron
    Yavneh, Irad
    Basri, Ronen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [23] MULTIGRID METHODS - DEVELOPMENT OF FAST SOLVERS
    HEMKER, PW
    KETTLER, R
    WESSELING, P
    DEZEEUW, PM
    APPLIED MATHEMATICS AND COMPUTATION, 1983, 13 (3-4) : 311 - 326
  • [24] RESILIENCE FOR MASSIVELY PARALLEL MULTIGRID SOLVERS
    Huber, Markus
    Gmeiner, Bjoern
    Ruede, Ulrich
    Wohlmuth, Barbara
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : S217 - S239
  • [25] Multigrid solvers for nonaligned sonic flows
    Brandt, Achi
    Diskin, Boris
    SIAM Journal on Scientific Computing, 21 (02): : 473 - 501
  • [26] Multigrid solvers for nonaligned sonic flows
    Brandt, A
    Diskin, B
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 473 - 501
  • [27] Multigrid in energy preconditioner for Krylov solvers
    Slaybaugh, R. N.
    Evans, T. M.
    Davidson, G. G.
    Wilson, P. P. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 405 - 419
  • [28] A survey of parallelization techniques for multigrid solvers
    Chow, Edmond
    Falgout, Robert A.
    Hu, Jonathan J.
    Tuminaro, Raymond S.
    Yang, Ulrike Meier
    PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 179 - 201
  • [29] Abstract cascading multigrid preconditioners in Besov spaces
    Ma, JT
    Brunner, H
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (02) : 349 - 365
  • [30] MONOLITHIC ALGEBRAIC MULTIGRID PRECONDITIONERS FOR THE STOKES EQUATIONS
    Voronin, Alexey
    Maclachlan, Scott
    Olson, Luke N.
    Tuminaro, Raymond S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2025, 47 (01): : A343 - A373