Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

被引:2
|
作者
Debreu, Laurent [1 ]
Neveu, Emilie [1 ]
Simon, Ehouarn [2 ]
Le Dimet, Francois-Xavier [1 ]
Vidard, Arthur [1 ]
机构
[1] INRIA Grenoble Rhone Alpes, LJK, Grenoble, France
[2] Univ Toulouse, INP, IRIT, Toulouse, France
关键词
variational data assimilation; multigrid methods; preconditioning; transport equation; CONJUGATE GRADIENTS; OPTIMIZATION; SYSTEMS;
D O I
10.1002/qj.2676
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. In a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse-grid correction step. We show that, even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid method. The view of multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale-dependent weighting of the multigrid preconditioner and the usual background-error covariance-matrix based preconditioner is proposed and brings significant improvements.
引用
收藏
页码:515 / 528
页数:14
相关论文
共 50 条
  • [1] Multigrid methods for improving the variational data assimilation in numerical weather prediction
    Kang, Youn-Hee
    Kwak, Do Young
    Park, Kyungjeen
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2014, 66
  • [2] Multigrid preconditioned solvers for some elastoplastic problems
    Kienesberger, J
    LARGE-SALE SCIENTIFIC COMPUTING, 2003, 2907 : 379 - 386
  • [3] MULTIGRID METHODS FOR VARIATIONAL-PROBLEMS
    MCCORMICK, SF
    RUGE, JW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) : 924 - 929
  • [4] Multigrid for atmospheric data assimilation: Analysis
    Brandt, A
    Gandlin, R
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 369 - 376
  • [5] Multigrid based preconditioners for the numerical solution of two-dimensional heterogeneous problems in geophysics
    Duff, I.
    Gratton, S.
    Pinel, X.
    Vasseur, X.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (08) : 1167 - 1181
  • [6] PRECONDITIONERS FOR THE SPECTRAL MULTIGRID METHOD
    PHILLIPS, TN
    ZANG, TA
    HUSSAINI, MY
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (03) : 273 - 292
  • [7] Conjugate gradients versus multigrid solvers for diffusion-based correlation models in data assimilation
    Gratton, S.
    Toint, P. L.
    Tshimanga, J.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (675) : 1481 - 1487
  • [8] Multigrid Methods for The Solution of Nonlinear Variational Inequalities
    El Houda, Nesba Nour
    Mohammed, Beggas
    Essaid, Belouafi Mohammed
    Ahmad, Imtiaz
    Ahmad, Hijaz
    Askar, Sameh
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 1956 - 1969
  • [9] Solution of coupled problems by parallel multigrid
    Becker-Lemgau, U
    Hakenberg, MG
    Joppich, W
    Mijalkovic, S
    Steckel, B
    Sontowski, T
    Tilch, R
    HIGH PERFORMANCE SCIENTIFIC AND ENGINEERING COMPUTING, 1999, 8 : 91 - 101
  • [10] Automatic Data Partitioning Applied to Multigrid PDE Solvers
    Fresno, Javier
    Gonzalez-Escribano, Arturo
    Llanos, Diego R.
    PROCEEDINGS OF THE 19TH INTERNATIONAL EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING, 2011, : 239 - 246