Harmonic maps and biharmonic Riemannian submersions

被引:3
|
作者
Urakawa, Hajime [1 ,2 ]
机构
[1] Tohoku Univ, Inst Int Educ, Kawauchi 41, Sendai, Miyagi 9808576, Japan
[2] Tohoku Univ, Grad Sch Informat Sci, Div Math, Aoba 6-3-09, Sendai, Miyagi 9808579, Japan
来源
NOTE DI MATEMATICA | 2019年 / 39卷 / 01期
基金
日本学术振兴会;
关键词
Riemannian submersions; harmonic map; biharmonic map; LAGRANGIAN SUBMANIFOLDS; HYPERSURFACES; STABILITY;
D O I
10.1285/i15900932v39n1p1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Characterizations for Riemannian submersions to be harmonic or biharmonic are shown. Examples of biharmonic but not harmonic Riemannian submersions are shown
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] Bifurcation for the Constant Scalar Curvature Equation and Harmonic Riemannian Submersions
    Otoba, Nobuhiko
    Petean, Jimmy
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) : 4453 - 4463
  • [22] Harmonic and biharmonic maps from surfaces
    Baird, P.
    Loubeau, E.
    Oniciuc, C.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 223 - 230
  • [23] On Riemannian submersions
    Lempert, L.
    ACTA MATHEMATICA HUNGARICA, 2019, 158 (02) : 363 - 372
  • [24] On Riemannian submersions
    L. Lempert
    Acta Mathematica Hungarica, 2019, 158 : 363 - 372
  • [25] Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular)
    Kim, Young-Heon
    McCann, Robert J.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 664 : 1 - 27
  • [26] Bifurcation for the Constant Scalar Curvature Equation and Harmonic Riemannian Submersions
    Nobuhiko Otoba
    Jimmy Petean
    The Journal of Geometric Analysis, 2020, 30 : 4453 - 4463
  • [27] TRANSVERSALLY BIHARMONIC MAPS BETWEEN FOLIATED RIEMANNIAN MANIFOLDS
    Chiang, Yuan-Jen
    Wolak, Robert A.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (08) : 981 - 996
  • [28] Stationary biharmonic maps from Rm into a Riemannian manifold
    Wang, CY
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) : 419 - 444
  • [29] F-biharmonic maps into general Riemannian manifolds
    Mi, Rong
    OPEN MATHEMATICS, 2019, 17 : 1249 - 1259
  • [30] f-BIHARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS
    Chiang, Yuan-Jen
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2013, : 74 - 86