F-biharmonic maps into general Riemannian manifolds

被引:0
|
作者
Mi, Rong [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou, Gansu, Peoples R China
来源
OPEN MATHEMATICS | 2019年 / 17卷
关键词
Sobolev inequality; L-p-norm; harmonic; LIOUVILLE-TYPE THEOREMS; HARMONIC MAPS; SUBMANIFOLDS; HYPERSURFACES; NONEXISTENCE;
D O I
10.1515/math-2019-0112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let psi : (M, g) -> (N, h) be a map between Riemannian manifolds (M, g) and (N, h). We introduce the notion of the F-bienergy functional E-F,E-2(psi) = integral(M) F (vertical bar tau(psi)vertical bar(2)/2)dv(g), where F : [0, infinity) -> [0, infinity) be C-3 function such that F' > 0 on (0, infinity), tau(psi) is the tension field of psi. Critical points of tau(F,2) are called F-biharmonic maps. In this paper, we prove a nonexistence result for F-biharmonic maps from a complete non-compact Riemannian manifold of dimension m = dim M >= 3 with infinite volume that admit an Euclidean type Sobolev inequality into general Riemannian manifold whose sectional curvature is bounded from above. Under these geometric assumptions we show that if the L-p-norm (p > 1) of the tension field is bounded and the m-energy of the maps is sufficiently small, then every F-biharmonic map must be harmonic. We also get a Liouville-type result under proper integral conditions which generalize the result of [Branding V., Luo Y., A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds, 2018, arXiv: 1806.11441v2].
引用
收藏
页码:1249 / 1259
页数:11
相关论文
共 50 条
  • [1] f-BIHARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS
    Chiang, Yuan-Jen
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2013, : 74 - 86
  • [2] f-BIHARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS
    Chiang, Yuan-Jen
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2012, 27 : 45 - 58
  • [3] f-Biharmonic Submanifolds in Space Forms and f-Biharmonic Riemannian Submersions from 3-Manifolds
    Wang, Ze-Ping
    Qin, Li-Hua
    MATHEMATICS, 2024, 12 (08)
  • [4] ON f-BIHARMONIC MAPS AND f-BIHARMONIC SUBMANIFOLDS
    Ou, Ye-Lin
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (02) : 461 - 477
  • [5] f-Biharmonic maps and f-biharmonic submanifolds II
    Ou, Ye-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1285 - 1296
  • [6] On the f-biharmonic Maps and Submanifolds
    Zegga, Kaddour
    Cherif, A. Mohamed
    Djaa, Mustapha
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 157 - 168
  • [7] STABILITY OF F-BIHARMONIC MAPS
    Torbaghan, S. M. Kazemi
    Rezaii, M. M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06): : 1657 - 1669
  • [8] SOME RESULTS OF f-BIHARMONIC MAPS
    Zegga, K.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2018, 87 (02): : 179 - 190
  • [9] SOME RESULTS OF F-BIHARMONIC MAPS
    Han, Yingbo
    Feng, Shuxiang
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (01): : 47 - 66
  • [10] A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds
    Branding, Volker
    Luo, Yong
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 148