F-biharmonic maps into general Riemannian manifolds

被引:0
|
作者
Mi, Rong [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou, Gansu, Peoples R China
来源
OPEN MATHEMATICS | 2019年 / 17卷
关键词
Sobolev inequality; L-p-norm; harmonic; LIOUVILLE-TYPE THEOREMS; HARMONIC MAPS; SUBMANIFOLDS; HYPERSURFACES; NONEXISTENCE;
D O I
10.1515/math-2019-0112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let psi : (M, g) -> (N, h) be a map between Riemannian manifolds (M, g) and (N, h). We introduce the notion of the F-bienergy functional E-F,E-2(psi) = integral(M) F (vertical bar tau(psi)vertical bar(2)/2)dv(g), where F : [0, infinity) -> [0, infinity) be C-3 function such that F' > 0 on (0, infinity), tau(psi) is the tension field of psi. Critical points of tau(F,2) are called F-biharmonic maps. In this paper, we prove a nonexistence result for F-biharmonic maps from a complete non-compact Riemannian manifold of dimension m = dim M >= 3 with infinite volume that admit an Euclidean type Sobolev inequality into general Riemannian manifold whose sectional curvature is bounded from above. Under these geometric assumptions we show that if the L-p-norm (p > 1) of the tension field is bounded and the m-energy of the maps is sufficiently small, then every F-biharmonic map must be harmonic. We also get a Liouville-type result under proper integral conditions which generalize the result of [Branding V., Luo Y., A nonexistence theorem for proper biharmonic maps into general Riemannian manifolds, 2018, arXiv: 1806.11441v2].
引用
收藏
页码:1249 / 1259
页数:11
相关论文
共 50 条
  • [21] Bubbling analysis for extrinsic biharmonic maps from general Riemannian 4-manifolds
    Youmin Chen
    Miaomiao Zhu
    Science China Mathematics, 2023, 66 : 581 - 600
  • [22] Bubbling analysis for extrinsic biharmonic maps from general Riemannian 4-manifolds
    Youmin Chen
    Miaomiao Zhu
    ScienceChina(Mathematics), 2023, 66 (03) : 581 - 600
  • [23] On f-biharmonic Submanifolds of Three Dimensional Trans- Sasakian Manifolds
    Sarkar, Avijit
    Biswas, Nirmal
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (02): : 395 - 408
  • [24] Rigidity of transversally biharmonic maps between foliated Riemannian manifolds
    Ohno, Shinji
    Sakai, Takashi
    Urakawa, Hajime
    HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (03) : 637 - 654
  • [25] Biharmonic Riemannian maps
    Sahin, Bayram
    ANNALES POLONICI MATHEMATICI, 2011, 102 (01) : 39 - 49
  • [26] A short note on f-biharmonic hypersurfaces
    Perktas, Selcen Y.
    Acet, Bilal E.
    Blaga, Adara M.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2020, 61 (01): : 119 - 126
  • [27] f-BIHARMONIC SUBMANIFOLDS AND f-BIHARMONIC INTEGRAL SUBMANIFOLDS IN LOCALLY CONFORMAL ALMOST COSYMPLECTIC SPACE FORMS
    Aslam, Mohd
    Karaca, Fatma
    Siddiqui, Aliya Naaz
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02): : 595 - 606
  • [28] Liouville-type theorems for biharmonic maps between Riemannian manifolds
    Baird, Paul
    Fardoun, Ali
    Ouakkas, Seddik
    ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (01) : 49 - 68
  • [29] Energy identity of approximate biharmonic maps to Riemannian manifolds and its application
    Wang, Changyou
    Zheng, Shenzhou
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (04) : 960 - 987
  • [30] BIHARMONIC CLASSIFICATION OF RIEMANNIAN MANIFOLDS
    NAKAI, M
    SARIO, L
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (03) : 432 - &