Maximum Likelihood Blind Image Separation Using Nonsymmetrical Half-Plane Markov Random Fields

被引:5
|
作者
Guidara, Rima [1 ]
Hosseini, Shahram [1 ]
Deville, Yannick [1 ]
机构
[1] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France
关键词
Blind source separation (BSS); maximum likelihood approach; nonstationary sources; nonsymmetrical half-plane (NSHP) Markov random fields; NONSTATIONARY SOURCE SEPARATION; INDEPENDENT COMPONENT ANALYSIS; SIGNALS; MIXTURE; RESTORATION; MODELS; MESH;
D O I
10.1109/TIP.2009.2027367
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a maximum likelihood approach for blindly separating linear instantaneous mixtures of images. The spatial autocorrelation within each image is described using non-symmetrical half-plane (NSHP) Markov random fields in order to simplify the joint probability density functions of the source images. A first implementation assuming stationary sources is presented. It is then extended to a more realistic nonstationary image model: two approaches, respectively based on blocking and kernel smoothing, are proposed to cope with the nonstationarity of the images. The estimation of the mixing matrix is performed using an iterative equivariant version of the Newton-Raphson algorithm. Moreover, score functions, required for the computation of the updating rule, are approximated at each iteration by parametric polynomial estimators. Results achieved with artificial mixtures of both artificial and real-world images, including an astrophysical application, clearly prove the high performance of our methods, as compared to classical algorithms.
引用
收藏
页码:2435 / 2450
页数:16
相关论文
共 50 条
  • [41] A Revisit of Generative Model for Automatic Image Annotation using Markov Random Fields
    Xiang, Yu
    Zhou, Xiangdong
    Chua, Tat-Seng
    Ngo, Chong-Wah
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1153 - +
  • [42] PET image segmentation using a Gaussian mixture model and Markov random fields
    Layer T.
    Blaickner M.
    Knäusl B.
    Georg D.
    Neuwirth J.
    Baum R.P.
    Schuchardt C.
    Wiessalla S.
    Matz G.
    EJNMMI Physics, 2 (1) : 1 - 15
  • [43] Multichannel image restoration using compound Gauss-Markov random fields
    Molina, R
    Mateos, J
    Katsaggelos, AK
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 141 - 144
  • [44] Biomedical Image Analysis Using Markov Random Fields & Efficient Linear Programing
    Komodakis, Nikos
    Besbes, Ahmed
    Glocker, Ben
    Paragios, Nikos
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 6628 - +
  • [45] Bayesian image interpolation using Markov random fields driven by visually relevant image features
    Colonnese, S.
    Rinauro, S.
    Scarano, G.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (08) : 967 - 983
  • [46] IMAGE RECONSTRUCTION FROM A MANHATTAN GRID VIA PIECEWISE PLANE FITTING AND GAUSSIAN MARKOV RANDOM FIELDS
    Prelee, Matthew A.
    Neuhoff, David L.
    Pappas, Thrasyvoulos N.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2061 - 2064
  • [47] Spectral-Spatial Hyperspectral Image Classification Using Cascaded Markov Random Fields
    Cao, Xianghai
    Wang, Xiaozhen
    Wang, Da
    Zhao, Jing
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4861 - 4872
  • [48] Bayesian multichannel image restoration using compound Gauss-Markov random fields
    Molina, R
    Mateos, J
    Katsaggelos, AK
    Vega, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) : 1642 - 1654
  • [49] Mammographic image segmentation using a tissue-mixture model and Markov random fields
    McGarry, G
    Deriche, M
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2000, : 416 - 419
  • [50] On the convergence of EM-like algorithms for image segmentation using Markov random fields
    Roche, Alexis
    Ribes, Delphine
    Bach-Cuadra, Meritxell
    Krueger, Gunnar
    MEDICAL IMAGE ANALYSIS, 2011, 15 (06) : 830 - 839