Multichannel image restoration using compound Gauss-Markov random fields

被引:0
|
作者
Molina, R [1 ]
Mateos, J [1 ]
Katsaggelos, AK [1 ]
机构
[1] Univ Granada, Dept Ciencias Computac & IA, E-18071 Granada, Spain
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a solution to the multichannel image restoration problem is provided using compound Gauss Markov random fields. For the single channel deblurring problem the convergence of the Simulated Annealing (SA) and Iterative Conditional Mode (ICM) algorithms has not been established. We propose two new iterative multichannel restoration algorithms which can be considered as extensions of the classical SA and ICM approaches and whose convergence is established. Experimental results with color images demonstrate the effectiveness of the proposed algorithms.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [1] Bayesian multichannel image restoration using compound Gauss-Markov random fields
    Molina, R
    Mateos, J
    Katsaggelos, AK
    Vega, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) : 1642 - 1654
  • [2] Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle
    Figueiredo, MAT
    Leitao, JMN
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (08) : 1089 - 1102
  • [3] COMPOUND GAUSS-MARKOV RANDOM-FIELDS FOR IMAGE ESTIMATION
    JENG, FC
    WOODS, JW
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (03) : 683 - 697
  • [4] PROBABILISTIC IMAGE PROCESSING BY EXTENDED GAUSS-MARKOV RANDOM FIELDS
    Tanaka, Kazuyuki
    Morin, Nicolas
    Yasuda, Muneki
    Titterington, D. M.
    [J]. 2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 617 - +
  • [5] HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS
    WONG, E
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1625 - &
  • [6] Transmission tomography reconstruction using compound Gauss-Markov random fields and ordered subsets
    Lopez, A.
    Martin, J. M.
    Molina, R.
    Katsaggelos, A. K.
    [J]. IMAGE ANALYSIS AND RECOGNITION, PT 2, 2006, 4142 : 559 - 569
  • [7] Bayesian restoration of high resolution SAR imagery with Gauss-Markov random fields
    Chen, X
    Zhang, H
    Wang, C
    Wu, T
    [J]. IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 4648 - 4650
  • [8] Quickest Detection of Gauss-Markov Random Fields
    Heydari, Javad
    Tajer, Ali
    Poor, H. Vincent
    [J]. 2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 808 - 814
  • [9] Restoration of severely blurred high range images using stochastic and deterministic relaxation algorithms in compound Gauss-Markov random fields
    Molina, R
    Katsaggelos, AK
    Mateos, J
    Hermoso, A
    Segall, CA
    [J]. PATTERN RECOGNITION, 2000, 33 (04) : 555 - 571
  • [10] An iterative method for Bayesian Gauss-Markov image restoration
    Bouhamidi, A.
    Jbilou, K.
    [J]. APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 361 - 372