Multichannel image restoration using compound Gauss-Markov random fields

被引:0
|
作者
Molina, R [1 ]
Mateos, J [1 ]
Katsaggelos, AK [1 ]
机构
[1] Univ Granada, Dept Ciencias Computac & IA, E-18071 Granada, Spain
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a solution to the multichannel image restoration problem is provided using compound Gauss Markov random fields. For the single channel deblurring problem the convergence of the Simulated Annealing (SA) and Iterative Conditional Mode (ICM) algorithms has not been established. We propose two new iterative multichannel restoration algorithms which can be considered as extensions of the classical SA and ICM approaches and whose convergence is established. Experimental results with color images demonstrate the effectiveness of the proposed algorithms.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [21] NONCAUSAL GAUSS-MARKOV RANDOM-FIELDS - PARAMETER STRUCTURE AND ESTIMATION
    BALRAM, N
    MOURA, JMF
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) : 1333 - 1355
  • [22] Identification of 2-D noncausal Gauss-Markov random fields
    Cusani, R
    Baccarelli, E
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (03) : 759 - 764
  • [23] Cloud Telemetry Modeling via Residual Gauss-Markov Random Fields
    Landolfi, Nicholas C.
    O'Neill, Daniel C.
    Lall, Sanjay
    [J]. 2021 24TH CONFERENCE ON INNOVATION IN CLOUDS, INTERNET AND NETWORKS AND WORKSHOPS (ICIN), 2021,
  • [24] Detection of Gauss-Markov Random Fields With Nearest-Neighbor Dependency
    Anandkumar, Animashree
    Tong, Lang
    Swami, Ananthram
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) : 816 - 827
  • [25] Robust Image Segmentation based on Superpixels and Gauss-Markov Measure Fields
    Reyes, Alejandro
    Rubio-Rincon, Miguel E.
    Mendez, Martin O.
    Arce-Santana, Edgar R.
    Alba, Alfonso
    [J]. PROCEEDINGS OF A SPECIAL SESSION 2017 SIXTEENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI): ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, : 46 - 52
  • [26] Conditional simulation and estimation of Gauss-Markov random fields using the Bayesian nearest neighbor method
    Bagtzoglou, AC
    Ababou, R
    [J]. GEOENV I - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 1997, 9 : 477 - 491
  • [27] PARAMETER REDUCTION FOR THE COMPOUND GAUSS-MARKOV MODEL
    ZHANG, J
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (03) : 382 - 386
  • [28] Restoration of noisy image sequences using Markov random fields
    Hwang, Wen-Jyi
    Huang, Ching-Jiang
    Lu, Yeong-Cherng
    [J]. Journal of the Chinese Institute of Electrical Engineering, Transactions of the Chinese Institute of Engineers, Series E/Chung KuoTien Chi Kung Chieng Hsueh K'an, 1998, 5 (01): : 99 - 105
  • [29] An Explicit Solution for Image Restoration using Markov Random Fields
    Martin Pleschberger
    Stefan Schrunner
    Jürgen Pilz
    [J]. Journal of Signal Processing Systems, 2020, 92 : 257 - 267
  • [30] An Explicit Solution for Image Restoration using Markov Random Fields
    Pleschberger, Martin
    Schrunner, Stefan
    Pilz, Juergen
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2020, 92 (02): : 257 - 267