Description of 2-integer continuous knapsack polyhedra

被引:9
|
作者
Agra, A.
Constantinob, M.
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, CEOC, P-3810193 Aveiro, Portugal
[3] Univ Lisbon, DEIO & CIO, P-1749016 Lisbon, Portugal
关键词
mixed integer programming; polyhedral characterization; single node flow problem;
D O I
10.1016/j.disopt.2005.10.008
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we discuss the polyhedral structure of several mixed integer sets involving two integer variables. We show that the number of the corresponding facet-defining inequalities is polynomial on the size of the input data and their coefficients can also be computed in polynomial time using a known algorithm [D. Hirschberg, C. Wong, A polynomial-time algorithm for the knapsack problem with two variables, Journal of the Association for Computing Machinery 23 (1) (1976) 147-154] for the two integer knapsack problem. These mixed integer sets may arise as substructures of more complex mixed integer sets that model the feasible solutions of real application problems. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 50 条
  • [31] The continuous knapsack set
    Sanjeeb Dash
    Oktay Günlük
    Laurence A. Wolsey
    [J]. Mathematical Programming, 2016, 155 : 471 - 496
  • [32] On the exact separation of mixed integer knapsack cuts
    Fukasawa, Ricardo
    Goycoolea, Marcos
    [J]. MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) : 19 - 41
  • [33] A projection method for the integer quadratic knapsack problem
    Bretthauer, KM
    Shetty, B
    Syam, S
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1996, 47 (03) : 457 - 462
  • [34] On the facets of the mixed-integer knapsack polyhedron
    Atamtürk, A
    [J]. MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) : 145 - 175
  • [35] On the exact separation of mixed integer knapsack cuts
    Fukasawa, Ricardo
    Goycoolea, Marcos
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2007, 4513 : 225 - +
  • [36] Lifting two-integer knapsack inequalities
    Agra, A.
    Constantino, M. F.
    [J]. MATHEMATICAL PROGRAMMING, 2007, 109 (01) : 115 - 154
  • [37] Integer Programming Formulation of the Bilevel Knapsack Problem
    Mansi, R.
    Hanafi, S.
    Brotcorne, L.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (07) : 116 - 121
  • [38] Lifting two-integer knapsack inequalities
    A. Agra
    M.F. Constantino
    [J]. Mathematical Programming, 2007, 109 : 115 - 154
  • [39] On the exact separation of mixed integer knapsack cuts
    Ricardo Fukasawa
    Marcos Goycoolea
    [J]. Mathematical Programming, 2011, 128 : 19 - 41
  • [40] Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra
    Andrzej Ruszczyński
    [J]. Mathematical Programming, 2002, 93 : 195 - 215