Extended RKN-type methods for numerical integration of perturbed oscillators

被引:62
|
作者
Yang, Hongli [1 ]
Wu, Xinyuan [1 ]
You, Xiong [1 ]
Fang, Yonglei [2 ]
机构
[1] Nanjing Univ, Dept Math, State Key Lab Novel Software Technol, Nanjing 210093, Peoples R China
[2] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
关键词
Extended tree theory; Order conditions; Runge-Kutta-Nystrom-type methods; Perturbed oscillators; INITIAL-VALUE PROBLEMS; EXPLICIT ARKN METHODS; PAIR;
D O I
10.1016/j.cpc.2009.05.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, extended Runge-Kutta-Nystrom-type methods for the numerical integration of perturbed oscillators with low frequencies are presented, which inherit the framework of RKN methods and make full use of the special feature of the true flows for both the internal stages and the updates. Following the approach of J. Butcher, E. Hairer and G. Warmer, we develop a new kind of tree set to derive order conditions for the extended Runge-Kutta-Nystrom-type methods. The numerical stability and phase properties of the new methods are analyzed. Numerical experiments are accompanied to show the applicability and efficiency of our new methods in comparison with some well-known high quality methods proposed in the scientific literature. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1777 / 1794
页数:18
相关论文
共 50 条
  • [41] Diagonal implicit symplectic extended RKN methods for solving oscillatory Hamiltonian systems
    Shi, Mingxue
    Zhang, Hao
    Wang, Bin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (01):
  • [42] A numerical method for the integration of perturbed linear problems
    Lopez, DJ
    Martin, P
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 96 (01) : 65 - 73
  • [43] Numerical method for the integration of perturbed linear problems
    Applied Mathematics and Computation (New York), 1998, 96 (01): : 65 - 73
  • [44] NUMERICAL INTEGRATION OF PERTURBED LINEAR OSCILLATING SYSTEMS
    SCHEIFELE, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (01): : 186 - +
  • [45] QUANTUM DYNAMICS OF ANHARMONIC OSCILLATORS BY NUMERICAL INTEGRATION
    PARK, YRL
    TAHK, CT
    WILSON, DJ
    JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (02): : 786 - &
  • [46] NUMERICAL MULTISCALE METHODS FOR COUPLED OSCILLATORS
    Ariel, Gil
    Engquist, Bjorn
    Tsai, Richard
    MULTISCALE MODELING & SIMULATION, 2009, 7 (03): : 1387 - 1404
  • [47] Conservative numerical methods for nonlinear oscillators
    Holmes, Mark H.
    AMERICAN JOURNAL OF PHYSICS, 2020, 88 (01) : 60 - 69
  • [48] Construction of explicit symmetric and symplectic methods of Runge-Kutta-Nystrom type for solving perturbed oscillators
    Franco, J. M.
    Gomez, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4637 - 4649
  • [49] Note on derivation of order conditions for ARKN methods for perturbed oscillators
    Wu, Xinyuan
    You, Xiong
    Li, Jiyong
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) : 1545 - 1549
  • [50] New optimized explicit modified RKN methods for the numerical solution of the Schrodinger equation
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (01) : 390 - 411