Diagonal implicit symplectic extended RKN methods for solving oscillatory Hamiltonian systems

被引:0
|
作者
Shi, Mingxue [1 ]
Zhang, Hao [1 ]
Wang, Bin [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2019年 / 38卷 / 01期
关键词
Diagonal implicit methods; Symplectic methods; ERKN methods; Oscillatory Hamiltonian systems; KUTTA-NYSTROM METHODS; FOURIER COLLOCATION METHODS; ENERGY-CONSERVATION; ERKN INTEGRATORS; IMPLEMENTATION;
D O I
10.1007/s40314-019-0786-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies diagonal implicit symplectic extended Runge-Kutta-Nystrom (ERKN) methods for solving the oscillatory Hamiltonian system H(q,p)=1/2pTp+12qTMq+U(q). Based on symplecticity conditions and order conditions, we construct some diagonal implicit symplectic ERKN methods. The stability of the obtained methods is discussed. Three numerical experiments are carried out to show the performance of the methods. It follows from the numerical results that the new diagonal implicit symplectic methods are more effective than RKN methods when applied to the oscillatory Hamiltonian system.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Diagonal implicit symplectic extended RKN methods for solving oscillatory Hamiltonian systems
    Mingxue Shi
    Hao Zhang
    Bin Wang
    Computational and Applied Mathematics, 2019, 38
  • [2] Extended RKN methods with FSAL property for oscillatory systems
    Fang, Yonglei
    Li, Qinghong
    Wu, Xinyuan
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) : 1538 - 1548
  • [3] A long-term numerical energy-preserving analysis of symmetric and/or symplectic extended RKN integrators for efficiently solving highly oscillatory Hamiltonian systems
    Bin Wang
    Xinyuan Wu
    BIT Numerical Mathematics, 2021, 61 : 977 - 1004
  • [4] A long-term numerical energy-preserving analysis of symmetric and/or symplectic extended RKN integrators for efficiently solving highly oscillatory Hamiltonian systems
    Wang, Bin
    Wu, Xinyuan
    BIT NUMERICAL MATHEMATICS, 2021, 61 (03) : 977 - 1004
  • [5] Two-step extended RKN methods for oscillatory systems
    Li, Jiyong
    Wang, Bin
    You, Xiong
    Wu, Xinyuan
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (12) : 2486 - 2507
  • [6] Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems
    Chen, Zhaoxia
    You, Xiong
    Shi, Wei
    Liu, Zhongli
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) : 86 - 98
  • [7] Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems
    Franco, J. M.
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (06) : 479 - 492
  • [8] Diagonal Implicit Symmetric ERKN Integrators for Solving Oscillatory Reversible Systems
    Zhang H.
    Shi M.
    Li J.
    Wang B.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 1229 - 1247
  • [9] Order conditions for RKN methods solving general second-order oscillatory systems
    Xiong You
    Jinxi Zhao
    Hongli Yang
    Yonglei Fang
    Xinyuan Wu
    Numerical Algorithms, 2014, 66 : 147 - 176
  • [10] Exponentially fitted symmetric and symplectic DIRK methods for oscillatory Hamiltonian systems
    Ehigie, Julius Osato
    Diao, Dongxu
    Zhang, Ruqiang
    Fang, Yonglei
    Hou, Xilin
    You, Xiong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (04) : 1130 - 1152