Standard and Economical Cascadic Multigrid Methods for the Mortar Finite Element Methods

被引:0
|
作者
Xu, Xuejun [1 ]
Chen, Wenbin [2 ]
机构
[1] Chinese Acad Sci, Inst Computat Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Cascadic multigrid; mortar finite elements; SUBSTRUCTURING PRECONDITIONERS; ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, standard and economical cascadic multigrid methods are considered for solving the algebraic systems resulting from the mortar finite element methods. Both cascadic multigrid methods do not need full elliptic regularity, so they can be used to tackle more general elliptic problems. Numerical experiments are reported to support our theory.
引用
收藏
页码:180 / 201
页数:22
相关论文
共 50 条
  • [41] Additive Schwarz methods for elliptic mortar finite element problems
    Bjorstad, PE
    Dryja, M
    Rahman, T
    NUMERISCHE MATHEMATIK, 2003, 95 (03) : 427 - 457
  • [42] Mortar multiscale finite element methods for Stokes–Darcy flows
    Vivette Girault
    Danail Vassilev
    Ivan Yotov
    Numerische Mathematik, 2014, 127 : 93 - 165
  • [43] Additive Schwarz Methods for Elliptic Mortar Finite Element Problems
    Petter E. Bjørstad
    Maksymilian Dryja
    Talal Rahman
    Numerische Mathematik, 2003, 95 : 427 - 457
  • [44] Balancing domain decomposition for mortar mixed finite element methods
    Pencheva, G
    Yotov, I
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2003, 10 (1-2) : 159 - 180
  • [45] A numerical study of FETI algorithms for mortar finite element methods
    Stefanica, D
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (04): : 1135 - 1160
  • [46] Multigrid Methods for a Mixed Finite Element Method of the Darcy–Forchheimer Model
    Jian Huang
    Long Chen
    Hongxing Rui
    Journal of Scientific Computing, 2018, 74 : 396 - 411
  • [47] Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
    de Prenter, F.
    Verhoosel, C. V.
    van Brummelen, E. H.
    Evans, J. A.
    Messe, C.
    Benzaken, J.
    Maute, K.
    COMPUTATIONAL MECHANICS, 2020, 65 (03) : 807 - 838
  • [48] THE CONVERGENCE OF MULTIGRID METHODS FOR SOLVING FINITE ELEMENT EQUATIONS IN THE PRESENCE OF SINGULARITIES
    Y.Q. Huang
    Y.X. Li(Depariment of Mathematics
    Journal of Computational Mathematics, 1995, (04) : 315 - 324
  • [49] LOCAL MODIFICATION OF MESHES FOR ADAPTIVE AND OR MULTIGRID FINITE-ELEMENT METHODS
    RIVARA, MC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 36 (01) : 79 - 89
  • [50] Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
    F. de Prenter
    C. V. Verhoosel
    E. H. van Brummelen
    J. A. Evans
    C. Messe
    J. Benzaken
    K. Maute
    Computational Mechanics, 2020, 65 : 807 - 838