Multigrid solvers for immersed finite element methods and immersed isogeometric analysis

被引:32
|
作者
de Prenter, F. [1 ,3 ]
Verhoosel, C. V. [1 ]
van Brummelen, E. H. [1 ]
Evans, J. A. [2 ]
Messe, C. [2 ,4 ]
Benzaken, J. [2 ,5 ]
Maute, K. [2 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[2] Univ Colorado, Ann & HJ Smead Dept Aerosp Engn Sci, Boulder, CO 80309 USA
[3] Reden BV, Hengelo, OV, Netherlands
[4] German Aerosp Ctr DLR, Bremen, Germany
[5] Walt Disney Animat Studios, Burbank, CA USA
关键词
Immersed finite element method; Fictitious domain method; Iterative solver; Preconditioner; Multigrid; B-SPLINE GRIDS; TOPOLOGY OPTIMIZATION; STRUCTURAL TOPOLOGY; BOUNDARY-CONDITIONS; SHAPE OPTIMIZATION; SCHWARZ METHODS; CELL METHOD; CAST PARTS; ROBUST; DESIGN;
D O I
10.1007/s00466-019-01796-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ill-conditioning of the system matrix is a well-known complication in immersed finite element methods and trimmed isogeometric analysis. Elements with small intersections with the physical domain yield problematic eigenvalues in the system matrix, which generally degrades efficiency and robustness of iterative solvers. In this contribution we investigate the spectral properties of immersed finite element systems treated by Schwarz-type methods, to establish the suitability of these as smoothers in a multigrid method. Based on this investigation we develop a geometric multigrid preconditioner for immersed finite element methods, which provides mesh-independent and cut-element-independent convergence rates. This preconditioning technique is applicable to higher-order discretizations, and enables solving large-scale immersed systems at a computational cost that scales linearly with the number of degrees of freedom. The performance of the preconditioner is demonstrated for conventional Lagrange basis functions and for isogeometric discretizations with both uniform B-splines and locally refined approximations based on truncated hierarchical B-splines.
引用
收藏
页码:807 / 838
页数:32
相关论文
共 50 条
  • [1] Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
    F. de Prenter
    C. V. Verhoosel
    E. H. van Brummelen
    J. A. Evans
    C. Messe
    J. Benzaken
    K. Maute
    Computational Mechanics, 2020, 65 : 807 - 838
  • [2] Interpolation-based immersed finite element and isogeometric analysis
    Fromm J.E.
    Wunsch N.
    Xiang R.
    Zhao H.
    Maute K.
    Evans J.A.
    Kamensky D.
    Computer Methods in Applied Mechanics and Engineering, 2023, 405
  • [3] Preconditioning immersed isogeometric finite element methods with application to flow problems
    de Prenter, F.
    Verhoosel, C. V.
    van Brummelen, E. H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 348 : 604 - 631
  • [4] New geometric immersed interface multigrid solvers
    Adams, L
    Chartier, TP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1516 - 1533
  • [5] Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies
    de Prenter, Frits
    Verhoosel, Clemens V.
    van Brummelen, E. Harald
    Larson, Mats G.
    Badia, Santiago
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (06) : 3617 - 3656
  • [6] Stability and Conditioning of Immersed Finite Element Methods: Analysis and Remedies
    Frits de Prenter
    Clemens V. Verhoosel
    E. Harald van Brummelen
    Mats G. Larson
    Santiago Badia
    Archives of Computational Methods in Engineering, 2023, 30 : 3617 - 3656
  • [7] On computational issues of immersed finite element methods
    Wang, X. Sheldon
    Zhang, L. T.
    Liu, Wing Kam
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (07) : 2535 - 2551
  • [8] Variational implementation of immersed finite element methods
    Heltai, Luca
    Costanzo, Francesco
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 229 : 110 - 127
  • [9] Immersed Finite Element Method for Interface Problems with Algebraic Multigrid Solver
    Feng, Wenqiang
    He, Xiaoming
    Lin, Yanping
    Zhang, Xu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (04) : 1045 - 1067
  • [10] A robust multigrid method for one dimensional immersed finite element method
    Wang, Saihua
    Wang, Feng
    Xu, Xuejun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2244 - 2260