Stein's Lemma for Classical-Quantum Channels

被引:0
|
作者
Berta, Mario [1 ]
Hirche, Christoph [2 ]
Kaur, Eneet [3 ]
Wilde, Mark M. [3 ,4 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] Univ Autonoma Barcelona, Dept Fis, Fis Teor Informacio & Fenomens Quant, Barcelona, Spain
[3] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
关键词
STRONG CONVERSE; DISCRIMINATION; CAPACITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein's lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.
引用
收藏
页码:2564 / 2568
页数:5
相关论文
共 50 条
  • [31] Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels
    Dalai, Marco
    Winter, Andreas
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 151 - 155
  • [32] Classical-quantum semigroups
    Aniello, Paolo
    XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [33] The Classical-Quantum Limit
    Layton, Isaac
    Oppenheim, Jonathan
    PRX QUANTUM, 2024, 5 (02):
  • [34] Efficient quantum key distribution protocol based on classical-quantum polarized channels
    Yi, Zhengzhong
    Fang, Junbin
    Lin, Puxi
    Wen, Xiaojun
    Jiang, Zoe Lin
    Wang, Xuan
    QUANTUM INFORMATION PROCESSING, 2019, 18 (12)
  • [35] Classical-Quantum Limits
    Todd A. Oliynyk
    Foundations of Physics, 2016, 46 : 1551 - 1572
  • [36] Classical-Quantum Limits
    Oliynyk, Todd A.
    FOUNDATIONS OF PHYSICS, 2016, 46 (12) : 1551 - 1572
  • [37] Gaussian classical-quantum channels: Gain from entanglement-assistance
    A. S. Holevo
    Problems of Information Transmission, 2014, 50 : 1 - 14
  • [38] Protecting classical-quantum signals in free-space optical channels
    Villasenor, E.
    Winnel, M. S.
    Ralph, T. C.
    Aguinaldo, R.
    Green, J.
    Malaney, R.
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [39] Gaussian Classical-Quantum Channels: Gain from Entanglement-Assistance
    Holevo, A. S.
    PROBLEMS OF INFORMATION TRANSMISSION, 2014, 50 (01) : 1 - 14
  • [40] Capacity of input-memoryless causal ergodic classical-quantum channels
    Bjelakovic, Igor
    Boche, Holger
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 251 - +