Stein's Lemma for Classical-Quantum Channels

被引:0
|
作者
Berta, Mario [1 ]
Hirche, Christoph [2 ]
Kaur, Eneet [3 ]
Wilde, Mark M. [3 ,4 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] Univ Autonoma Barcelona, Dept Fis, Fis Teor Informacio & Fenomens Quant, Barcelona, Spain
[3] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
关键词
STRONG CONVERSE; DISCRIMINATION; CAPACITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is well known that for the discrimination of classical and quantum channels in the finite, non-asymptotic regime, adaptive strategies can give an advantage over non-adaptive strategies. However, Hayashi [IEEE Trans. Inf. Theory 55(8), 3807 (2009)] showed that in the asymptotic regime, the exponential error rate for the discrimination of classical channels is not improved in the adaptive setting. We show that, for the discrimination of classical-quantum channels, adaptive strategies do not lead to an asymptotic advantage. As our main result, this establishes Stein's lemma for classical-quantum channels. Our proofs are based on the concept of amortized distinguishability of channels, which we analyse using entropy inequalities.
引用
收藏
页码:2564 / 2568
页数:5
相关论文
共 50 条
  • [21] Sphere-Packing Bound for Classical-Quantum Channels
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    Tomamichel, Marco
    2017 IEEE INFORMATION THEORY WORKSHOP (ITW), 2017, : 479 - 483
  • [22] Generalized relative entropies and the capacity of classical-quantum channels
    Mosonyi, Milan
    Datta, Nilanjana
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [23] Non-additivity in classical-quantum wiretap channels
    Tikku A.
    Berta M.
    Renes J.M.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (02): : 526 - 535
  • [24] Ergodic classical-quantum channels: Structure and coding theorems
    Bjelakovic, Igor
    Boche, Holger
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 723 - 742
  • [25] A note on random coding bounds for classical-quantum channels
    M. Dalai
    Problems of Information Transmission, 2017, 53 : 222 - 228
  • [26] Secure and Robust Identification via Classical-Quantum Channels
    Boche, Holger
    Deppe, Christian
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6734 - 6749
  • [27] Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 1385 - 1403
  • [28] Tight Lower Bound on the Error Exponent of Classical-Quantum Channels
    Renes, Joseph M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 530 - 538
  • [29] Sphere-Packing Bound for Symmetric Classical-Quantum Channels
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    Tomamichel, Marco
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 286 - 290
  • [30] Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels
    Dalai, Marco
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5603 - 5617