Trend removal and filtering of TEC data by empirical mode decomposition

被引:0
|
作者
Kirichenko, Irina A. [1 ]
Kogogin, Denis A. [1 ]
Nasyrov, Igor A. [1 ]
Maksimov, Denis S. [1 ]
机构
[1] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.23919/ursigass49373.2020.9232330
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article describes a method of empirical mode decomposition that allows processing nonlinear and nonstationary signals. This method was used to remove the trend and filter the data of slant total electron content (hereinafter TEC). The results obtained are compared with the most commonly used approaches to processing total electron content data, which include digital filtering methods such as moving average filtering and removing the trend from the data of total electron content by subtracting approximating polynomials.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Regional features of the temperature trend in China based on Empirical Mode Decomposition
    Xian Sun
    Zhenshan Lin
    Xiaoxia Cheng
    Chuangye Jiang
    [J]. Journal of Geographical Sciences, 2008, 18 : 166 - 176
  • [32] Application of variable mode decomposition in the removal of blasting signal trend items
    Jia, Bei
    Ling, Tianlong
    Hou, Shijun
    Liu, Dianshu
    Wang, Xiao
    [J]. Baozha Yu Chongji/Explosion and Shock Waves, 2020, 40 (04):
  • [33] Empirical mode decomposition using variable filtering with time scale calibrating
    Yuan Ye~(1
    2.School of Industrial Design and Information Engineering
    3.The Science and Technology Committee of China Aerospace Science and Industry Corporation
    [J]. Journal of Systems Engineering and Electronics, 2008, 19 (06) : 1076 - 1081
  • [34] Thermal Image Filtering by Bi-dimensional Empirical Mode Decomposition
    Mihai-Bogdan, Gavriloaia
    Constantin-Radu, Vizireanu
    Octavian, Fratu
    Constantin, Mara
    Dragos-Nicolae, Vizireanu
    Radu, Preda
    Gheorghe, Gavriloaia
    [J]. ADVANCED TOPICS IN OPTOELECTRONICS, MICROELECTRONICS, AND NANOTECHNOLOGIES VII, 2015, 9258
  • [35] Empirical mode decomposition using variable filtering with time scale calibrating
    Yuan Ye
    Mei Wenbo
    Wu Siliang
    Yuan Qi
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2008, 19 (06) : 1076 - 1081
  • [36] Adaptive modulation interval filtering algorithm based on empirical mode decomposition
    Dao, Xinyu
    Gao, Min
    Li, Chaowang
    [J]. MEASUREMENT, 2019, 141 : 277 - 286
  • [37] Instantaneous Frequency Selective Filtering Using Ensemble Empirical Mode Decomposition
    Gupta, Rinki
    Kumar, Arun
    Bahl, Rajendar
    [J]. IETE JOURNAL OF RESEARCH, 2022, 68 (05) : 3657 - 3669
  • [38] CONVERGENCE OF A CONVOLUTION-FILTERING-BASED ALGORITHM FOR EMPIRICAL MODE DECOMPOSITION
    Huang, Chao
    Yang, Lihua
    Wang, Yang
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2009, 1 (04) : 561 - 571
  • [39] Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering
    Wang, Liguo
    Wan, Yumei
    Lu, Tingting
    Yang, Yueshuang
    [J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2016, 37 (02): : 284 - 290
  • [40] A Multivariate Empirical Mode Decomposition based Filtering for Subject Independent BCI
    Gaur, Pramod
    Pachori, Rain Bilas
    Wang, Hui
    Prasad, Girijesh
    [J]. 2016 27TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2016,