Empirical mode decomposition using variable filtering with time scale calibrating

被引:2
|
作者
Yuan Ye [1 ,2 ]
Mei Wenbo [1 ]
Wu Siliang [1 ]
Yuan Qi [3 ]
机构
[1] Beijing Inst Technol, Sch Informat Sci & Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Clothing Technol, Sch Ind Design & Informat Engn, Beijing 100029, Peoples R China
[3] China Aerosp Sci & Ind Corp, Sci & Technol Comm, Beijing 100854, Peoples R China
基金
中国国家自然科学基金;
关键词
empirical mode decomposition; variable FIR filtering; time scale calibrating;
D O I
10.1016/S1004-4132(08)60200-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed. Unlike the original empirical mode decomposition (EMD), which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process, this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes. The IMFs are results of a multiple variable frequency response FIR filtering when signals pass through the filters. Numerical examples validate that in contrast with the original EMD, the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 50 条
  • [1] Empirical mode decomposition using variable filtering with time scale calibrating
    Yuan Ye~(1
    2.School of Industrial Design and Information Engineering
    3.The Science and Technology Committee of China Aerospace Science and Industry Corporation
    JournalofSystemsEngineeringandElectronics, 2008, 19 (06) : 1076 - 1081
  • [2] Noise filtering using Empirical Mode Decomposition
    Boudraa, A. O.
    CCexus, J.
    Benramdane, S.
    Beghdadi, A.
    2007 9TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1-3, 2007, : 1409 - +
  • [3] Using Empirical Mode Decomposition for Ground Filtering
    Ozcan, Abdullah H.
    Unsalan, Cem
    2015 7TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2015, : 317 - 321
  • [4] Empirical Mode Decomposition in a Time-Scale Framework
    Colominas, Marcelo A.
    Schlotthauer, Gaston
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 155 - 159
  • [5] ON THE FILTERING PROPERTIES OF THE EMPIRICAL MODE DECOMPOSITION
    Wu, Zhaohua
    Huang, Norden E.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2010, 2 (04) : 397 - 414
  • [6] Filtering of surface EMG using ensemble empirical mode decomposition
    Zhang, Xu
    Zhou, Ping
    MEDICAL ENGINEERING & PHYSICS, 2013, 35 (04) : 537 - 542
  • [7] LiDAR Height Data Filtering using Empirical Mode Decomposition
    Ozcan, Abdullah H.
    Unsalan, Cem
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1224 - 1227
  • [8] USING EMPIRICAL MODE DECOMPOSITION WEIGHTING FUNCTIONALS AS TIME SERIES FILTERING COEFFICIENTS FOR PHYSIOLOGICAL RECORDINGS
    Aven, John L.
    Mandell, Arnold J.
    Coppola, Richard
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2012, 4 (1-2)
  • [9] Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering
    Qiao Nan
    Wang Li-hui
    Liu Qing-ya
    Zhai Hong-qi
    MEASUREMENT, 2019, 146 : 885 - 891
  • [10] LiDAR Data Filtering and DTM Generation Using Empirical Mode Decomposition
    Ozcan, Abdullah H.
    Unsalan, Cem
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (01) : 360 - 371