Empirical mode decomposition using variable filtering with time scale calibrating

被引:2
|
作者
Yuan Ye [1 ,2 ]
Mei Wenbo [1 ]
Wu Siliang [1 ]
Yuan Qi [3 ]
机构
[1] Beijing Inst Technol, Sch Informat Sci & Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Clothing Technol, Sch Ind Design & Informat Engn, Beijing 100029, Peoples R China
[3] China Aerosp Sci & Ind Corp, Sci & Technol Comm, Beijing 100854, Peoples R China
基金
中国国家自然科学基金;
关键词
empirical mode decomposition; variable FIR filtering; time scale calibrating;
D O I
10.1016/S1004-4132(08)60200-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel and efficient method for decomposing a signal into a set of intrinsic mode functions (IMFs) and a trend is proposed. Unlike the original empirical mode decomposition (EMD), which uses spline fits to extract variations from the signal by separating the local mean from the fluctuations in the decomposing process, this new method being proposed takes advantage of the theory of variable finite impulse response (FIR) filtering where filter coefficients and breakpoint frequencies can be adjusted to track any peak-to-peak time scale changes. The IMFs are results of a multiple variable frequency response FIR filtering when signals pass through the filters. Numerical examples validate that in contrast with the original EMD, the proposed method can fine-tune the frequency resolution and suppress the aliasing effectively.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 50 条
  • [21] Seismic Denoising Based on Time-Varying Filtering and Empirical Mode Decomposition in the fx Domain
    Chen, Siyuan
    Cao, Siyuan
    Sun, Yaoguang
    Huang, Fang
    Cao, Guoming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] Time-frequency signal filtering of coulostatically induced transients based on empirical mode decomposition
    Zhao, Y.-T.
    Guo, X-P.
    CORROSION, 2007, 63 (08) : 749 - 757
  • [23] Magnetic Anomaly Detection with Empirical Mode Decomposition Trend Filtering
    Zhou, Han
    Pan, Zhongming
    Zhang, Zhuohang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (11): : 2503 - 2506
  • [24] Trend removal and filtering of TEC data by empirical mode decomposition
    Kirichenko, Irina A.
    Kogogin, Denis A.
    Nasyrov, Igor A.
    Maksimov, Denis S.
    2020 XXXIIIRD GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE, 2020,
  • [25] Information Preserving Empirical Mode Decomposition for Filtering Field Potentials
    Mehboob, Zareen
    Yin, Hujun
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 2009, 5788 : 226 - 233
  • [26] Morphological Filtering Enhanced Empirical Wavelet Transform for Mode Decomposition
    Xue, Biao
    Hong, Hong
    Zhou, Songzhao
    Chen, Gu
    Li, Yusheng
    Wang, Zhiyong
    Zhu, Xiaohua
    IEEE ACCESS, 2019, 7 : 14283 - 14293
  • [27] Using empirical mode decomposition to correlate paleoclimatic time-series
    Sole, J.
    Turiel, A.
    Llebot, J. E.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2007, 7 (02) : 299 - 307
  • [28] Time Series Forecasting Using Empirical Mode Decomposition and Hybrid Method
    Buyuksahin, Umit Cavus
    Ertekin, Seyda
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [29] Multiple scale analysis of complex networks using the empirical mode decomposition method
    Li, KePing
    Gao, ZiYou
    Zhao, XiaoMei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (12) : 2981 - 2986
  • [30] Rolling Bearing Fault Detection Using Autocorrelation Based Morphological Filtering and Empirical Mode Decomposition
    Wang, Jingyue
    Wang, Haotian
    Guo, Lixin
    Yang, Diange
    MECHANIKA, 2018, 24 (06): : 817 - 823