Inverse Source Problem for a Wave Equation with Final Observation Data

被引:3
|
作者
Jiang, Daijun [1 ,2 ]
Liu, Yikan [3 ]
Yamamoto, Masahiro [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
HYPERBOLIC PROBLEM; STABILITY;
D O I
10.1007/978-981-10-2633-1_11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter, we study the inverse problem on recovering a spatial component of the source term in a wave equation by the final observation data. Employing the analytic Fredholm theory, we establish a generic well-posedness result concerning the uniqueness of our inverse source problem. Numerically, by treating a corresponding minimization problem, we investigate the variational equation for the minimizer and develop an iterative thresholding algorithm. One- and two-dimensional numerical experiments are implemented to demonstrate the robustness and accuracy of the proposed algorithm.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 50 条
  • [1] INVERSE SOURCE PROBLEM FOR WAVE EQUATION AND GPR DATA INTERPRETATION PROBLEM
    Mukanova, B. G.
    Romanov, V. G.
    [J]. EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2016, 4 (03): : 15 - 28
  • [2] An inverse source problem for the wave equation
    Ton, BA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (03) : 269 - 284
  • [3] On the Inverse Source Problem for the Wave Equation
    Demchenko M.N.
    [J]. Journal of Mathematical Sciences, 2017, 224 (1) : 69 - 78
  • [4] AN INVERSE SOURCE PROBLEM FOR THE STOCHASTIC WAVE EQUATION
    Feng, Xiaoli
    Zhao, Meixia
    Li, Peijun
    Wang, Xu
    [J]. INVERSE PROBLEMS AND IMAGING, 2022, 16 (02) : 397 - 415
  • [5] INVERSE SOURCE PROBLEM WITH A FINAL OVERDETERMINATION FOR A FRACTIONAL DIFFUSION EQUATION
    Sakamoto, Kenichi
    Yamamoto, Masahiro
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (04) : 509 - 518
  • [6] INVERSE SOURCE IDENTIFICATION PROBLEM FOR THE WAVE EQUATION: AN APPLICATION FOR INTERPRETING GPR DATA
    Mukanova, B. G.
    Iskakov, K. T.
    Kembay, A. S.
    Boranbaev, S. A.
    [J]. EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2020, 8 (03): : 78 - 91
  • [7] Inverse Problem for the Wave Equation with a White Noise Source
    Tapio Helin
    Matti Lassas
    Lauri Oksanen
    [J]. Communications in Mathematical Physics, 2014, 332 : 933 - 953
  • [8] An inverse source problem for a damped wave equation with memory
    Seliga, Lukas
    Slodicka, Marian
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (02): : 111 - 122
  • [9] Inverse moving point source problem for the wave equation
    Al Jebawy, Hanin
    Elbadia, Abdellatif
    Triki, Faouzi
    [J]. INVERSE PROBLEMS, 2022, 38 (12)
  • [10] An Inverse Random Source Problem for the Biharmonic Wave Equation
    Li, Peijun
    Wang, Xu
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 949 - 974