Inverse Source Problem for a Wave Equation with Final Observation Data

被引:3
|
作者
Jiang, Daijun [1 ,2 ]
Liu, Yikan [3 ]
Yamamoto, Masahiro [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
HYPERBOLIC PROBLEM; STABILITY;
D O I
10.1007/978-981-10-2633-1_11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this chapter, we study the inverse problem on recovering a spatial component of the source term in a wave equation by the final observation data. Employing the analytic Fredholm theory, we establish a generic well-posedness result concerning the uniqueness of our inverse source problem. Numerically, by treating a corresponding minimization problem, we investigate the variational equation for the minimizer and develop an iterative thresholding algorithm. One- and two-dimensional numerical experiments are implemented to demonstrate the robustness and accuracy of the proposed algorithm.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 50 条