INVERSE SOURCE PROBLEM WITH A FINAL OVERDETERMINATION FOR A FRACTIONAL DIFFUSION EQUATION

被引:90
|
作者
Sakamoto, Kenichi [1 ]
Yamamoto, Masahiro [2 ]
机构
[1] Nippon Steel Corp Ltd, Tech Dev Bur, Adv Technol Res Labs, Math Sci & Technol Res Lab, Futtsu, Chiba 2938511, Japan
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
Inverse source problem; fractional diffusion equation; analytic perturbation; generic well-posedness;
D O I
10.3934/mcrf.2011.1.509
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a time fractional diffusion equation with source term, we discuss an inverse problem of determining a spatially varying function of the source by final overdetermining data. We prove that this inverse problem is well-posed in the Hadamard sense except for a discrete set of values of diffusion constants.
引用
收藏
页码:509 / 518
页数:10
相关论文
共 50 条
  • [1] Inverse source problem in a space fractional diffusion equation from the final overdetermination
    Shayegan, Amir Hossein Salehi
    Tajvar, Reza Bayat
    Ghanbari, Alireza
    Safaie, Ali
    [J]. APPLICATIONS OF MATHEMATICS, 2019, 64 (04) : 469 - 484
  • [2] Inverse source problem in a space fractional diffusion equation from the final overdetermination
    Amir Hossein Salehi Shayegan
    Reza Bayat Tajvar
    Alireza Ghanbari
    Ali Safaie
    [J]. Applications of Mathematics, 2019, 64 : 469 - 484
  • [3] Inverse problems for a perturbed time fractional diffusion equation with final overdetermination
    Kinash, Nataliia
    Janno, Jaan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) : 1925 - 1943
  • [4] Inverse source problem for a fractional diffusion equation
    Zhang, Ying
    Xu, Xiang
    [J]. INVERSE PROBLEMS, 2011, 27 (03)
  • [5] An Inverse Problem for a Nonlinear Transport Equation with Final Overdetermination
    Hamdi, N.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2008, 29 (04) : 230 - 244
  • [6] Inverse problem with final overdetermination for time-fractional differential equation in a Banach space
    Orlovsky, Dmitry
    Piskarev, Sergey
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (02): : 221 - 237
  • [7] Inverse coefficient problem for a quasilinear hyperbolic equation with final overdetermination
    Shcheglov A.Yu.
    [J]. Computational Mathematics and Mathematical Physics, 2006, 46 (4) : 616 - 635
  • [8] INVERSE PROBLEM FOR THE NONLINEAR HEAT-EQUATION WITH THE FINAL OVERDETERMINATION
    SAVATEEV, EG
    RIGANTI, R
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (01) : 29 - 43
  • [9] On the unique solvability of an inverse problem for a semilinear equation with final overdetermination
    Sazaklioglu, Ali Ugur
    Erdogan, Abdullah Said
    Ashyralyev, Allaberen
    [J]. INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [10] An Inverse Source Problem of Space-Fractional Diffusion Equation
    Liu, Songshu
    Feng, Lixin
    Zhang, Guilai
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4405 - 4424