The local Mobius equation and decomposition theorems in Riemannian geometry

被引:1
|
作者
Fernández-López, M
García-Río, E
Kupeli, DN
机构
[1] Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
[2] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
submersion; Mobius equation; twisted product; warped product; product Riemannian manifolds;
D O I
10.4153/CMB-2002-040-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A partial differential equation, the local Mobius equation, is introduced in Riemannian geometry which completely characterizes the local twisted product structure of a Riemannian manifold. Also the characterizations of warped product and product structures of Riemannian manifolds are made by the local Mobius equation and an additional partial differential equation.
引用
收藏
页码:378 / 387
页数:10
相关论文
共 50 条
  • [41] On Weyl's type theorems and genericity of projective rigidity in sub-Riemannian geometry
    Jean, Frederic
    Maslovskaya, Sofya
    Zelenko, Igor
    [J]. GEOMETRIAE DEDICATA, 2021, 213 (01) : 295 - 314
  • [42] The Schouten Curvature Tensor and the Jacobi Equation in Sub-Riemannian Geometry
    Krym V.R.
    [J]. Journal of Mathematical Sciences, 2021, 255 (2) : 184 - 192
  • [43] On Weyl’s type theorems and genericity of projective rigidity in sub-Riemannian geometry
    Frédéric Jean
    Sofya Maslovskaya
    Igor Zelenko
    [J]. Geometriae Dedicata, 2021, 213 : 295 - 314
  • [44] The Mobius Geometry of Hypersurfaces, II
    Bolt, Michael
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2010, 59 (03) : 695 - 715
  • [45] TOPOLOGICAL GEOMETRY ON MOBIUS BANDS
    BETTEN, D
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1968, 107 (05) : 363 - &
  • [46] On the Mobius geometry of Euclidean triangles
    Hertrich-Jeromin, Udo
    King, Alastair
    O'Hara, Jun
    [J]. ELEMENTE DER MATHEMATIK, 2013, 68 (03) : 96 - 114
  • [47] MOBIUS GEOMETRY OF SURFACE BANDS
    PENDL, A
    [J]. MONATSHEFTE FUR MATHEMATIK, 1973, 77 (05): : 416 - 432
  • [48] Semigroups in Mobius and Lorentzian geometry
    Lawson, JD
    [J]. GEOMETRIAE DEDICATA, 1998, 70 (02) : 139 - 180
  • [49] MOBIUS GEOMETRY OF SPHERICAL CONGRUITY
    BOL, G
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 237 : 109 - &
  • [50] Extended Riemannian geometry II: local heterotic double field theory
    Andreas Deser
    Marc Andre Heller
    Christian Sämann
    [J]. Journal of High Energy Physics, 2018