MOBIUS GEOMETRY OF SURFACE BANDS

被引:2
|
作者
PENDL, A [1 ]
机构
[1] FAK MATH KARLSRUHE,KAISER STR 12,D-7500 KARLSRUHE 1,WEST GERMANY
来源
MONATSHEFTE FUR MATHEMATIK | 1973年 / 77卷 / 05期
关键词
D O I
10.1007/BF01295320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:416 / 432
页数:17
相关论文
共 50 条
  • [1] TOPOLOGICAL GEOMETRY ON MOBIUS BANDS
    BETTEN, D
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1968, 107 (05) : 363 - &
  • [2] Instability of a Mobius Strip Minimal Surface and a Link with Systolic Geometry
    Pesci, Adriana I.
    Goldstein, Raymond E.
    Alexander, Gareth P.
    Moffatt, H. Keith
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (12)
  • [3] Mobius bands of wood and alabaster
    Frazier, Larry
    Schattschneider, Doris
    [J]. JOURNAL OF MATHEMATICS AND THE ARTS, 2008, 2 (03) : 107 - 122
  • [4] SURFACES IN MOBIUS GEOMETRY
    WANG, CP
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1992, 125 : 53 - 72
  • [5] The Mobius Geometry of Hypersurfaces
    Bolt, Michael
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (03) : 603 - 622
  • [6] TRIANGULATIONS IN MOBIUS GEOMETRY
    LUO, F
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) : 181 - 193
  • [7] Immersed Mobius bands in knot complements
    Hughes, Mark C.
    Kim, Seungwon
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (02): : 1059 - 1072
  • [8] Higher dimensional Mobius bands and their boundaries
    El Mir, Chady
    Lafontaine, Jacques
    [J]. MANUSCRIPTA MATHEMATICA, 2019, 160 (1-2) : 187 - 198
  • [9] The Mobius Geometry of Hypersurfaces, II
    Bolt, Michael
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2010, 59 (03) : 695 - 715
  • [10] Semigroups in Mobius and Lorentzian geometry
    Lawson, JD
    [J]. GEOMETRIAE DEDICATA, 1998, 70 (02) : 139 - 180