MULTICHANNEL SPARSE BLIND DECONVOLUTION ON THE SPHERE

被引:0
|
作者
Li, Yanjun [1 ]
Bresler, Yoram
机构
[1] Univ Illinois, CSL, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Manifold gradient descent; nonconvex optimization; Riemannian gradient; Riemannian Hessian; strict saddle points; super-resolution fluorescence microscopy;
D O I
10.1109/icassp.2019.8683334
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Multichannel blind deconvolution is the problem of recovering an unknown signal f and multiple unknown channels xi from convolutional measurements y(i) = x(i) circle star f (i = 1, 2, ... N). We consider the case where the x(i)'s are sparse, and convolution with f is invertible. Our nonconvex optimization formulation solves for a filter h on the unit sphere that produces sparse output y(i) circle star h. Under some technical assumptions, we show that all local minima of the objective function correspond to the inverse filter of f up to an inherent sign and shift ambiguity, and all saddle points have strictly negative curvatures. This geometric structure allows successful recovery of f and xi using a simple manifold gradient descent algorithm with random initialization. Our theoretical findings are complemented by numerical experiments, which demonstrate superior performance of the proposed approach over the previous methods.
引用
收藏
页码:7943 / 7947
页数:5
相关论文
共 50 条
  • [31] Multichannel blind deconvolution of spatially misaligned images
    Sroubek, F
    Flusser, J
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (07) : 874 - 883
  • [32] Multichannel blind deconvolution of transient impulsive signals
    Lecumberri, P.
    Gomez, M.
    Carlosena, A.
    [J]. 2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 1145 - +
  • [33] Natural Gradient Approach to Multichannel Blind Deconvolution
    Zhang Liqing
    [J]. Journal of Systems Engineering and Electronics, 2000, (01) : 22 - 31
  • [34] Estimating function approach to multichannel blind deconvolution
    Zhang, L
    Amari, S
    Cichocki, A
    [J]. 2000 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS: ELECTRONIC COMMUNICATION SYSTEMS, 2000, : 587 - 590
  • [35] Deterministic teciiniques for multichannel blind image deconvolution
    Souidene, W
    Abed-Meraim, K
    Beghdadi, A
    [J]. ISSPA 2005: THE 8TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 439 - 442
  • [36] Generalized quadratic minimization and blind multichannel deconvolution
    Gorokhov, A
    Stoica, P
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) : 201 - 213
  • [37] Identifiability Conditions for Compressive Multichannel Blind Deconvolution
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    [J]. IEEE Transactions on Signal Processing, 2020, 68 : 4627 - 4642
  • [38] SUB-NYQUIST MULTICHANNEL BLIND DECONVOLUTION
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5454 - 5458
  • [39] Identifiability Conditions for Compressive Multichannel Blind Deconvolution
    Mulleti, Satish
    Lee, Kiryung
    Eldar, Yonina C.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4627 - 4642
  • [40] Multichannel Blind Deconvolution Using the Conjugate Gradient
    Bin Xia
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 3, PROCEEDINGS, 2009, 5553 : 612 - 620