Inhibition of CRISPR-Cas9 with Bacteriophage Proteins

被引:338
|
作者
Rauch, Benjamin J. [1 ,2 ]
Silvis, Melanie R. [1 ,3 ]
Hultquist, Judd F. [2 ,4 ,5 ]
Waters, Christopher S. [1 ,2 ,3 ]
McGregor, Michael J. [2 ,4 ,5 ]
Krogan, Nevan J. [2 ,4 ,5 ]
Bondy-Denomy, Joseph [1 ,2 ]
机构
[1] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Quantitat Biosci Inst, QBI, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Tetrad Grad Program, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
[5] J David Gladstone Inst, San Francisco, CA 94158 USA
基金
美国国家科学基金会;
关键词
LISTERIA-MONOCYTOGENES; RNA; SEQUENCE; SYSTEMS; DNA; IDENTIFICATION; TRANSCRIPTION; ENDONUCLEASE; INTEGRATION; EXPRESSION;
D O I
10.1016/j.cell.2016.12.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial CRISPR-Cas systems utilize sequencespecific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs'' present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.
引用
收藏
页码:150 / +
页数:19
相关论文
共 50 条
  • [21] The invisible dance of CRISPR-Cas9
    Palermo, Giulia
    Ricci, Clarisse G.
    McCammon, J. Andrew
    [J]. PHYSICS TODAY, 2019, 72 (04) : 30 - 36
  • [22] CRISPR-Cas9 in cancer therapeutics
    Randhawa, Shubhchintan
    [J]. REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 129 - 163
  • [23] MicroRNAs tame CRISPR-Cas9
    Jouravleva, Karina
    Zamore, Phillip D.
    [J]. NATURE CELL BIOLOGY, 2019, 21 (04) : 416 - 417
  • [24] CRISPR-Cas9 wins Nobel
    Strzyz, Paulina
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (12) : 714 - 714
  • [25] Allergan dives into CRISPR-Cas9
    不详
    [J]. NATURE BIOTECHNOLOGY, 2017, 35 (04) : 296 - 296
  • [26] CRISPR-Cas9 for muscle dystrophies
    Ballouhey, Oceane
    Bartoli, Marc
    Levy, Nicolas
    [J]. M S-MEDECINE SCIENCES, 2020, 36 (04): : 358 - 366
  • [27] CRISPR-Cas9: Power And Challenges
    Charpentier, Emmanuelle
    [J]. FASEB JOURNAL, 2016, 30
  • [28] CRISPR-Cas9 as a Trojan horse
    Monte, Daniel F. M.
    [J]. MOLECULAR THERAPY, 2023, 31 (10) : 2817 - 2818
  • [29] CRISPR-Cas9: Advances and Challenges
    Charpentier, E.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 766 - 766
  • [30] Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9
    Bryson, Alexandra L.
    Hwang, Young
    Sherrill-Mix, Scott
    Wu, Gary D.
    Lewis, James D.
    Black, Lindsay
    Clark, Tyson A.
    Bushman, Frederic D.
    [J]. MBIO, 2015, 6 (03):