Inhibition of CRISPR-Cas9 with Bacteriophage Proteins

被引:338
|
作者
Rauch, Benjamin J. [1 ,2 ]
Silvis, Melanie R. [1 ,3 ]
Hultquist, Judd F. [2 ,4 ,5 ]
Waters, Christopher S. [1 ,2 ,3 ]
McGregor, Michael J. [2 ,4 ,5 ]
Krogan, Nevan J. [2 ,4 ,5 ]
Bondy-Denomy, Joseph [1 ,2 ]
机构
[1] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Quantitat Biosci Inst, QBI, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Tetrad Grad Program, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
[5] J David Gladstone Inst, San Francisco, CA 94158 USA
基金
美国国家科学基金会;
关键词
LISTERIA-MONOCYTOGENES; RNA; SEQUENCE; SYSTEMS; DNA; IDENTIFICATION; TRANSCRIPTION; ENDONUCLEASE; INTEGRATION; EXPRESSION;
D O I
10.1016/j.cell.2016.12.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial CRISPR-Cas systems utilize sequencespecific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs'' present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.
引用
收藏
页码:150 / +
页数:19
相关论文
共 50 条
  • [11] Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9
    Shen, Juntao
    Zhou, Jinjie
    Chen, Guo-Qiang
    Xiu, Zhi-Long
    [J]. JOURNAL OF VIROLOGY, 2018, 92 (17)
  • [12] Efficient engineering of T4 bacteriophage via CRISPR-Cas9
    Duong, Michelle
    Nugen, Sam
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [13] The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit
    Bean, Bjorn D. M.
    Whiteway, Malcolm
    Martin, Vincent J. J.
    [J]. G3-GENES GENOMES GENETICS, 2022, 12 (08):
  • [14] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    [J]. CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [15] Putting the brakes on CRISPR-Cas9
    Todorovic, Vesna
    [J]. NATURE METHODS, 2017, 14 (02) : 108 - 108
  • [16] CRISPR-Cas9: a world first?
    不详
    [J]. LANCET, 2018, 392 (10163): : 2413 - 2413
  • [17] Identification of a Cryptic Binding Site in CRISPR-Cas9 for Targeted Inhibition
    Zhang, Niu
    Zuo, Zhicheng
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (11) : 3500 - 3509
  • [18] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    [J]. ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [19] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    [J]. NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855
  • [20] CRISPR-Cas9 wins Nobel
    Strzyz, Paulina
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (12) : 714 - 714