Active fibers: Matching deformable tract templates to diffusion tensor images

被引:15
|
作者
Eckstein, Ilya [1 ]
Shattuck, David W. [1 ]
Stein, Jason L. [1 ]
McMahon, Katie L. [2 ]
de Zubicaray, Greig [2 ]
Wright, Margaret J. [3 ]
Thompson, Paul M. [1 ]
Toga, Arthur W. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[2] Univ Queensland, Ctr Magnet Resonance, Funct MRI Lab, Brisbane, Qld, Australia
[3] Queensland Inst Med Res, Brisbane, Qld 4006, Australia
关键词
Diffusion tensor imaging; DTI tractography; Template matching; Deformable curve evolution; HUMAN BRAIN; MATTER; TRACKING; BUNDLE; MAPS;
D O I
10.1016/j.neuroimage.2009.01.065
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:T82 / T89
页数:8
相关论文
共 50 条
  • [31] Application of repeated GA to deformable template matching in cattle images
    Velasco, HMG
    Orellana, CJG
    Macías, MM
    Caballero, RG
    Sotoca, MIA
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS, 2004, 3179 : 134 - 145
  • [32] Deformable anatomic templates embed information on eye movement disorders into brain images
    Kumar, V.
    Hayman, L. A.
    Wong, A.
    Tang, R.
    Schiffman, J.
    JOURNAL OF NEUROLOGY, 2012, 259 : S222 - S222
  • [33] Bilateral filtering of diffusion tensor MR images
    Hamarneh, Ghassan
    Hradsky, Judith
    2006 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2006, : 507 - +
  • [34] FINGERPRINT IMAGES ENHANCEMENT USING DIFFUSION TENSOR
    Romdhane, Feriel
    Benzarti, Faouzi
    Amiri, Hamid
    2013 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND SOFTWARE APPLICATIONS (ICEESA), 2013, : 612 - 617
  • [35] Segmenting Fiber Bundles in Diffusion Tensor Images
    Goh, Alvina
    Vidal, Rene
    COMPUTER VISION - ECCV 2008, PT III, PROCEEDINGS, 2008, 5304 : 238 - 250
  • [36] A Riemannian scalar measure for diffusion tensor images
    Astola, Laura
    Fuster, Andrea
    Florack, Luc
    PATTERN RECOGNITION, 2011, 44 (09) : 1885 - 1891
  • [37] Detecting Structure in Diffusion Tensor MR Images
    Nand, K. Krishna
    Abugharbieh, Rafeef
    Booth, Brian G.
    Hamarneh, Ghassan
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2011), PT II, 2011, 6892 : 90 - +
  • [38] Efficient anisotropic filtering of diffusion tensor images
    Xu, Qing
    Anderson, Adam W.
    Gore, John C.
    Ding, Zhaohua
    MAGNETIC RESONANCE IMAGING, 2010, 28 (02) : 200 - 211
  • [39] Riemannian Bayesian Estimation of Diffusion Tensor Images
    Krajsek, Kai
    Menzel, Marion I.
    Scharr, Hanno
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 2327 - 2334
  • [40] A Riemannian approach to diffusion tensor images segmentation
    Lenglet, C
    Rousson, M
    Deriche, R
    Faugeras, O
    Lehericy, S
    Ugurbil, K
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2005, 3565 : 591 - 602