Active fibers: Matching deformable tract templates to diffusion tensor images

被引:15
|
作者
Eckstein, Ilya [1 ]
Shattuck, David W. [1 ]
Stein, Jason L. [1 ]
McMahon, Katie L. [2 ]
de Zubicaray, Greig [2 ]
Wright, Margaret J. [3 ]
Thompson, Paul M. [1 ]
Toga, Arthur W. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[2] Univ Queensland, Ctr Magnet Resonance, Funct MRI Lab, Brisbane, Qld, Australia
[3] Queensland Inst Med Res, Brisbane, Qld 4006, Australia
关键词
Diffusion tensor imaging; DTI tractography; Template matching; Deformable curve evolution; HUMAN BRAIN; MATTER; TRACKING; BUNDLE; MAPS;
D O I
10.1016/j.neuroimage.2009.01.065
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:T82 / T89
页数:8
相关论文
共 50 条
  • [21] Diffusion tensor orientation matching for image registration
    Curran, KM
    Alexander, DC
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 149 - 156
  • [22] Aging of corticospinal tract fibers according to the cerebral origin in the human brain: A diffusion tensor imaging study
    Jang, Sung Ho
    Seo, Jeong Pyo
    NEUROSCIENCE LETTERS, 2015, 585 : 77 - 81
  • [23] A robust tensor watermarking algorithm for diffusion-tensor images
    Liu, Chengmeng
    Li, Zhi
    Wang, Guomei
    Zheng, Long
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2024, 25 (03) : 384 - 397
  • [24] Automatic Deformable Diffusion Tensor Registration for Fiber Population Analysis
    Irfanoglu, M. O.
    Machiraju, R.
    Sammet, S.
    Pierpaoli, C.
    Knopp, M. V.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 1014 - 1022
  • [25] Deformable Registration for Geometric Distortion Correction of Diffusion Tensor Imaging
    Yao, Xu-Feng
    Song, Zhi-Jian
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 14TH INTERNATIONAL CONFERENCE, CAIP 2011, PT I, 2011, 6854 : 545 - 553
  • [26] A statistical framework for the classification of tensor morphologies in diffusion tensor images
    Zhu, Hongtu
    Xu, Dongrong
    Raz, Amir
    Hao, Xuejun
    Zhang, Heping
    Kangarlu, Alayar
    Bansal, Ravi
    Peterson, Bradley S.
    MAGNETIC RESONANCE IMAGING, 2006, 24 (05) : 569 - 582
  • [28] Diffusion tensor fiber tractography of the olfactory tract
    Skorpil, Mikael
    Rolheiser, Tyler
    Robertson, Harold
    Sundin, Anders
    Svenningsson, Per
    MAGNETIC RESONANCE IMAGING, 2011, 29 (02) : 289 - 292
  • [30] Tract-based spatial statistics of diffusion tensor images in children with histories of early social deprivation
    Behen, M. E.
    Munian, G. R.
    Helder, E.
    Makki, M.
    Bhatt, A.
    Wilson, B.
    Chugani, H. T.
    ANNALS OF NEUROLOGY, 2008, 64 : S106 - S107