Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces

被引:1
|
作者
Caicedo, Alejandro [1 ]
Cuevas, Claudio [2 ]
Mateus, Eder [1 ]
Viana, Arlucio [3 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, Itabaiana, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, Recife, PE, Brazil
[3] Univ Fed Sergipe, Dept Matemat, Sao Cristovao, Brazil
关键词
Systems of partial differential equations; Fractional diffusion; Self-similarity; Marcinkiewicz spaces; NAVIER-STOKES EQUATIONS; ASYMPTOTIC-BEHAVIOR; ANOMALOUS TRANSPORT; BLOW-UP; EXISTENCE;
D O I
10.1016/j.chaos.2021.110756
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of solutions to the Cauchy problem for a strongly coupled semilinear reaction-diffusion system in Marcinkiewicz spaces L-(p1,L-infinity) x L-(p2,L-infinity). The exponents p(1) , p(2) are chosen in a way that allows us to prove the existence of self-similar for this system. We present a fractional version of Ya-mazaki's inequality, an essential tool that potentially applies to other fractional-in-time PDEs. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [42] Blow-up solutions to the Cauchy problem of a fractional reaction-diffusion system
    Wu, Ezi
    Tang, Yanbin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [43] Blow-up solutions to the Cauchy problem of a fractional reaction-diffusion system
    Ezi Wu
    Yanbin Tang
    [J]. Journal of Inequalities and Applications, 2015
  • [44] GROUND STATES FOR A FRACTIONAL REACTION-DIFFUSION SYSTEM
    Chen, Peng
    Cao, Zhijie
    Chen, Sitong
    Tang, Xianhua
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 556 - 567
  • [45] Pattern formation in a fractional reaction-diffusion system
    Gafiychuk, V. V.
    Datsko, B. Yo.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 300 - 306
  • [46] Global attractors in Orlicz spaces for reaction-diffusion equations
    Zhang, Chang
    Liu, Cuncai
    Meng, Fengjuan
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 123
  • [47] Analytic solutions of two coupled reaction-diffusion equations
    Barrera, P
    Brugarino, T
    Pignato, L
    [J]. AIR POLLUTION XI, 2003, 13 : 135 - 142
  • [48] Solvability of a coupled quasilinear reaction-diffusion system
    Ambrazevicius, A.
    Skakauskas, V.
    [J]. APPLICABLE ANALYSIS, 2021, 100 (04) : 791 - 803
  • [49] Boundary control for a class of coupled fractional reaction-diffusion systems
    Zhuang B.
    Cui B.-T.
    Chen J.
    [J]. Zhuang, Bo (bozhuang@jiangnan.edu.cn), 1600, South China University of Technology (37): : 592 - 602
  • [50] Nonexistence of global solutions for a fractional system of strongly coupled integro-differential equations
    Ahmad, Ahmad M.
    Tatar, Nasser-Eddine
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (06) : 2715 - 2730