共 50 条
Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces
被引:1
|作者:
Caicedo, Alejandro
[1
]
Cuevas, Claudio
[2
]
Mateus, Eder
[1
]
Viana, Arlucio
[3
]
机构:
[1] Univ Fed Sergipe, Dept Matemat, Itabaiana, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, Recife, PE, Brazil
[3] Univ Fed Sergipe, Dept Matemat, Sao Cristovao, Brazil
关键词:
Systems of partial differential equations;
Fractional diffusion;
Self-similarity;
Marcinkiewicz spaces;
NAVIER-STOKES EQUATIONS;
ASYMPTOTIC-BEHAVIOR;
ANOMALOUS TRANSPORT;
BLOW-UP;
EXISTENCE;
D O I:
10.1016/j.chaos.2021.110756
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove the existence of solutions to the Cauchy problem for a strongly coupled semilinear reaction-diffusion system in Marcinkiewicz spaces L-(p1,L-infinity) x L-(p2,L-infinity). The exponents p(1) , p(2) are chosen in a way that allows us to prove the existence of self-similar for this system. We present a fractional version of Ya-mazaki's inequality, an essential tool that potentially applies to other fractional-in-time PDEs. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文