Adaptive and optimal pointwise deconvolution density estimations by wavelets

被引:4
|
作者
Wu, Cong [1 ,2 ]
Zeng, Xiaochen [1 ]
Mi, Na [1 ]
机构
[1] Beijing Univ Technol, Coll Math, Fac Sci, Beijing 100124, Peoples R China
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
Wavelets; Thresholding; Data driven; Deconvolution; Density estimation; 42C40; 62G07; 62G20; CONVERGENCE;
D O I
10.1007/s10444-021-09844-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers multivariate deconvolution density estimations under the local Holder condition by wavelet methods. A pointwise lower bound of the deconvolution model is first investigated; then we provide a linear wavelet estimate to obtain the optimal convergence rate. The nonlinear wavelet estimator is introduced for adaptivity, which attains a nearly optimal rate (optimal up to a logarithmic factor). Because the nonlinear wavelet estimator depends on an upper bound of the smoothness index of unknown functions, we finally discuss a data-driven version without any assumption on the estimated functions.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Pointwise Convergence of Wavelets of Generalized Shannon Type
    Shi, Xian Liang
    Wang, Wei
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (12) : 2343 - 2354
  • [32] Wavelet pointwise estimations under multiplicative censoring
    Wang, Jinru
    Zhang, Zhenming
    Zhang, Xue
    Zeng, Xiaochen
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (04)
  • [33] Pointwise Convergence of Wavelets of Generalized Shannon Type
    Xian Liang SHI
    Wei WANG
    [J]. Acta Mathematica Sinica,English Series, 2013, (12) : 2343 - 2354
  • [34] Pointwise convergence of wavelets of generalized Shannon type
    Xian Liang Shi
    Wei Wang
    [J]. Acta Mathematica Sinica, English Series, 2013, 29 : 2343 - 2354
  • [35] THE DECONVOLUTION OF PHASE-SHIFTED WAVELETS
    BICKEL, SH
    [J]. GEOPHYSICS, 1983, 48 (07) : 1018 - 1018
  • [36] THE DECONVOLUTION OF PHASE-SHIFTED WAVELETS
    LEVY, S
    OLDENBURG, DW
    [J]. GEOPHYSICS, 1982, 47 (09) : 1285 - 1294
  • [37] AN ADAPTIVE FEM FOR THE POINTWISE TRACKING OPTIMAL CONTROL PROBLEM OF THE STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : A2967 - A2998
  • [38] Adaptive density estimation in deconvolution problems with unknown error distribution
    Kappus, Johanna
    Mabon, Gwennaelle
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2879 - 2904
  • [39] Optimal bandwidth selection for multivariate kernel deconvolution density estimation
    Youndje, Elie
    Wells, Martin T.
    [J]. TEST, 2008, 17 (01) : 138 - 162
  • [40] Optimal bandwidth selection for multivariate kernel deconvolution density estimation
    Élie Youndjé
    Martin T. Wells
    [J]. TEST, 2008, 17 : 138 - 162