Optimal bandwidth selection for multivariate kernel deconvolution density estimation

被引:0
|
作者
Élie Youndjé
Martin T. Wells
机构
[1] Université de Rouen,Laboratoire de Mathématiques Raphaël Salem
[2] Cornell University,Department of Social Statistics
来源
TEST | 2008年 / 17卷
关键词
Density estimation; Deconvolution; Cross-validation; Asymptotic optimality; 62F03; 62E17; 62P25;
D O I
暂无
中图分类号
学科分类号
摘要
Assume we have i.i.d. replications from the mismeasured random vector Y=X+ε, where X and ε are mutually independent. We consider a data-driven bandwidth, based on a cross-validation ideas, for multivariate kernel deconvolution estimator of the density of X. The proposed data-driven bandwidth selection method is shown to be asymptotically optimal. As a by-product of the proof of this result, we show that the average squared error, the integrated squared error, and the mean integrated squared error are asymptotically equivalent error measures.
引用
收藏
页码:138 / 162
页数:24
相关论文
共 50 条