Restricted polynomial regression

被引:0
|
作者
LeBlanc, M [1 ]
机构
[1] FRED HUTCHINSON CANC RES CTR,SEATTLE,WA 98104
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
D O I
10.1016/S0167-9473(96)00059-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A simple method of extending linear models to models that include non-linear predictor effects and interactions is investigated. The new technique builds a polynomial model by using sums of products of linear functions of the predictor variables (or other basis functions). The sum of products expansion more effectively controls the number of parameters than a general kth-order polynomial model. Examples are given for regression and classification. Finally, extensions to more general nonparametric modeling are discussed.
引用
收藏
页码:153 / 167
页数:15
相关论文
共 50 条
  • [21] RESTRICTED POLYNOMIAL-EXPANSIONS AND APPROXIMATION
    PERLSTADT, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 40 (01) : 127 - 135
  • [22] NONTRIVIALITY OF RESTRICTED RANGE POLYNOMIAL APPROXIMATION
    JOHNSON, DJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (02) : 183 - 187
  • [23] Inequalities for the derivative of a polynomial with restricted zeros
    Uzma Mubeen Ahanger
    W. M. Shah
    The Journal of Analysis, 2021, 29 : 1367 - 1374
  • [24] On the zeros of a quaternionic polynomial with restricted coefficients
    V. Milovanovic, Gradimir
    Mir, Abdullah
    Ahmad, Abrar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 653 : 231 - 245
  • [25] On the location of zeros of a polynomial with restricted coefficients
    Rather, N. A.
    Shah, Mushtaq A.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2014, 18 (02): : 189 - 195
  • [26] On Inequalities For The Derivative Of A Polynomial With Restricted Zeros
    Bhat, Faroz Ahmad
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 437 - 443
  • [27] Inequalities for the derivative of a polynomial with restricted zeros
    Ahanger, Uzma Mubeen
    Shah, W. M.
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1367 - 1374
  • [28] On regularized polynomial functional regression
    Holzleitner, Markus
    Pereverzyev, Sergei V.
    JOURNAL OF COMPLEXITY, 2024, 83
  • [29] Polynomial algorithms for isotonic regression
    Chepoi, V
    L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 147 - 160
  • [30] Polynomial Regression on Riemannian Manifolds
    Hinkle, Jacob
    Muralidharan, Prasanna
    Fletcher, P. Thomas
    Joshi, Sarang
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 : 1 - 14