Polynomial Regression on Riemannian Manifolds

被引:0
|
作者
Hinkle, Jacob [1 ]
Muralidharan, Prasanna [1 ]
Fletcher, P. Thomas [1 ]
Joshi, Sarang [1 ]
机构
[1] Univ Utah, SCI Inst, Salt Lake City, UT 84112 USA
来源
关键词
FITTING SMOOTH PATHS; EQUATIONS; SPLINES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds. The theory enables parametric analysis in a wide range of applications, including rigid and non-rigid kinematics as well as shape change of organs due to growth and aging. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein and the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] A MAP ESTIMATION ALGORITHM FOR BAYESIAN POLYNOMIAL REGRESSION ON RIEMANNIAN MANIFOLDS
    Muralidharan, Prasanna
    Hinkle, Jacob
    Fletcher, P. Thomas
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 215 - 219
  • [2] Robust nonparametric regression on Riemannian manifolds
    Henry, Guillermo
    Rodriguez, Daniela
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (05) : 611 - 628
  • [3] Intrinsic Polynomials for Regression on Riemannian Manifolds
    Hinkle, Jacob
    Fletcher, P. Thomas
    Joshi, Sarang
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 50 (1-2) : 32 - 52
  • [4] Intrinsic Polynomials for Regression on Riemannian Manifolds
    Jacob Hinkle
    P. Thomas Fletcher
    Sarang Joshi
    Journal of Mathematical Imaging and Vision, 2014, 50 : 32 - 52
  • [5] Robust Multivariate Regression on Riemannian Manifolds
    Lee, Sangyul
    Oh, Hee-Seok
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 753 - 754
  • [6] Wrapped Gaussian Process Regression on Riemannian Manifolds
    Mallasto, Anton
    Feragen, Aasa
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5580 - 5588
  • [7] Nonparametric Regression between General Riemannian Manifolds
    Steinke, Florian
    Hein, Matthias
    Schoelkopf, Bernhard
    SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03): : 527 - 563
  • [8] Nonparametric recursive regression estimation on Riemannian Manifolds
    Khardani, Salah
    Yao, Anne Francoise
    STATISTICS & PROBABILITY LETTERS, 2022, 182
  • [9] Polynomial growth harmonic functions on complete Riemannian manifolds
    Lee, YH
    REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (02) : 315 - 332
  • [10] Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds
    P. Thomas Fletcher
    International Journal of Computer Vision, 2013, 105 : 171 - 185