Quasi-greedy bases in lp(0 < p < 1) are democratic

被引:11
|
作者
Albiac, Fernando [1 ]
Ansorena, Jose L. [2 ]
Wojtaszczyk, Przemyslaw [3 ]
机构
[1] Univ Publ Navarra, Dept Math Stat & Comp Sci InaMat2, Campus Arrosadia, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
Quasi-greedy basis; Democratic basis; Quasi-Banach spaces; Sequence spaces;
D O I
10.1016/j.jfa.2020.108871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The list of known Banach spaces whose linear geometry determines the (nonlinear) democracy functions of their quasi-greedy bases to the extent that they end up being democratic, reduces to c(0), l(2), and all separable L-1-spaces. Oddly enough, these are the only Banach spaces that, when they have an unconditional basis, it is unique. Our aim in this paper is to study the connection between quasi-greediness and democracy of bases in non-locally convex spaces. We prove that all quasi-greedy bases in l(p) for 0 < p < 1(which also has a unique unconditional basis) are democratic with fundamental function of the same order as (m(1/p))(m=1)(infinity). The methods we develop allow us to obtain even more, namely that the same occurs in any separable L-p-space, 0 < p < 1, with the bounded approximation property. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] On the Lp dual Minkowski problem for-1&lt;p&lt;0
    Mui, Stephanie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [22] Unconditional and quasi-greedy bases in Lp with applications to Jacobi polynomials Fourier series
    Albiac, Fernando
    Ansorena, Jose L.
    Ciaurri, Oscar
    Varona, Juan L.
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (02) : 561 - 574
  • [23] The Lp dual Minkowski problem about 0 &lt; p &lt; 1 and q &gt; 0
    Lu, Fangxia
    Pu, Zhaonian
    OPEN MATHEMATICS, 2021, 19 (01): : 1648 - 1663
  • [24] ON DENSENESS OF C0∞(Ω) AND COMPACTNESS IN Lp(x)(Ω) FOR 0 &lt; p(x) &lt; 1
    Bandaliev, R. A.
    Hasanov, S. G.
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (01) : 1 - 13
  • [25] Wavelets as unconditional bases for the spaces Lp(R), 1&lt;p&lt;∞
    Madan, S
    WAVELETS AND ALLIED TOPICS, 2001, : 73 - 82
  • [26] Projections and unconditional bases in direct sums of lp spaces, 0 &lt; p ≤ ∞
    Albiac, Fernando
    Luis Ansorena, Jose
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (11) : 2052 - 2062
  • [27] Uniqueness of the unconditional basis of l1 (lp) and lp(l1), 0 &lt; p &lt; 1
    Albiac, F
    Kalton, N
    Leránoz, C
    POSITIVITY, 2004, 8 (04) : 443 - 454
  • [28] Isometries on the quasi-Banach spaces L p (0 &lt; p &lt; 1)
    Li, Lei
    Ren, Wei Yun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) : 1519 - 1524
  • [29] Approximation of Fourier series in terms of functions in Lp Spaces for 0 &lt; p &lt; 1
    Aboud, Sahab Mohsen
    Bhaya, Eman Samir
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 897 - 911
  • [30] Continuity of the solution to the even Lp Minkowski problem for 0 &lt; p &lt; 1 in the plane
    Wang, Hejun
    Lv, Yusha
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (12)