Existence of weak solutions for the nonlocal energy-weighted fractional reaction-diffusion equations

被引:0
|
作者
Chang, Mao-Sheng [1 ]
Wu, Hsi-Chun [2 ]
机构
[1] Fu Jen Catholic Univ, Dept Math, New Taipei 24205, Taiwan
[2] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
关键词
Reaction-diffusion equation; Nonlocal operators; Gradient flow; Fractional Laplacian; POHOZAEV IDENTITY; DISPERSION; REGULARITY;
D O I
10.1007/s00028-019-00494-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any bounded smooth domain Omega subset of R-n, we establish the global existence of weak solutions u is an element of L-2(0, T; H-Omega,0(s)) with u(t) is an element of L-2( 0, T; H-Omega(-s)) to the initial boundary value problem of the nonlocal energy-weighted fractional reaction-diffusion equations for any initial data u(0) is an element of H-Omega,0(s).
引用
收藏
页码:883 / 914
页数:32
相关论文
共 50 条
  • [1] Existence of weak solutions for the nonlocal energy-weighted fractional reaction–diffusion equations
    Mao-Sheng Chang
    Hsi-Chun Wu
    Journal of Evolution Equations, 2019, 19 : 883 - 914
  • [2] Global Existence of Weak Solutions for the Nonlocal Energy-weighted Reaction-diffusion Equations
    Chang, Mao-Sheng
    Wu, Hsi-Chun
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (03): : 695 - 723
  • [3] Existence of stationary solutions for some nonlocal reaction-diffusion equations
    Vougalter, Vitali
    Volpert, Vitaly
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 12 (01) : 43 - 51
  • [4] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [5] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [6] Existence of Pulses for Local and Nonlocal Reaction-Diffusion Equations
    Nathalie Eymard
    Vitaly Volpert
    Vitali Vougalter
    Journal of Dynamics and Differential Equations, 2017, 29 : 1145 - 1158
  • [7] EXISTENCE OF STATIONARY PULSES FOR NONLOCAL REACTION-DIFFUSION EQUATIONS
    Volpert, Vitaly
    Vougalter, Vviali
    DOCUMENTA MATHEMATICA, 2014, 19 : 1141 - 1153
  • [8] Existence of Pulses for Local and Nonlocal Reaction-Diffusion Equations
    Eymard, Nathalie
    Volpert, Vitaly
    Vougalter, Vitali
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (03) : 1145 - 1158
  • [9] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [10] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226