On advances in statistical modeling of natural images

被引:361
|
作者
Srivastava, A [1 ]
Lee, AB
Simoncelli, EP
Zhu, SC
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[4] Ohio State Univ, Dept Comp Sci, Columbus, OH 43210 USA
关键词
natural image statistics; non-Gaussian models; scale invariance; statistical image analysis; image manifold; generalized Laplacian; Bessel K form;
D O I
10.1023/A:1021889010444
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Statistical analysis of images reveals two interesting properties: (i) invariance of image statistics to scaling of images, and (ii) non-Gaussian behavior of image statistics, i.e. high kurtosis, heavy tails, and sharp central cusps. In this paper we review some recent results in statistical modeling of natural images that attempt to explain these patterns. Two categories of results are considered: (i) studies of probability models of images or image decompositions (such as Fourier or wavelet decompositions), and (ii) discoveries of underlying image manifolds while restricting to natural images. Applications of these models in areas such as texture analysis, image classification, compression, and denoising are also considered.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [31] Modeling Natural Images Using Gated MRFs
    Ranzato, Marc'Aurelio
    Mnih, Volodymyr
    Susskind, Joshua M.
    Hinton, Geoffrey E.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (09) : 2206 - 2222
  • [32] NaturaSketch: Modeling from Images and Natural Sketches
    Olsen, Luke
    Samavati, Faramarz F.
    Jorge, Joaquim A.
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2011, 31 (06) : 24 - 34
  • [33] Detection of image compositing based on a statistical model for natural images
    Sun, Shao-Jie
    Wu, Qiong
    Li, Guo-Hui
    Zidonghua Xuebao/ Acta Automatica Sinica, 2009, 35 (12): : 1564 - 1567
  • [34] The statistical properties of local log-contrast in natural images
    Lindgren, Jussi T.
    Hurri, Jarmo
    Hyvaerinen, Aapo
    IMAGE ANALYSIS, PROCEEDINGS, 2007, 4522 : 354 - +
  • [35] Human sensitivity to phase perturbations in natural images: a statistical framework
    Thomson, MGA
    Foster, DH
    Summers, RJ
    PERCEPTION, 2000, 29 (09) : 1057 - 1069
  • [36] Statistical Textural Distinctiveness for Salient Region Detection in Natural Images
    Scharfenberger, Christian
    Wong, Alexander
    Fergani, Khalil
    Zelek, John S.
    Clausi, David A.
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 979 - 986
  • [37] From information scaling of natural images to regimes of statistical models
    Wu, Ying Nian
    Guo, Cheng-En
    Zhu, Song-Chun
    QUARTERLY OF APPLIED MATHEMATICS, 2008, 66 (01) : 81 - 122
  • [38] Advances in Modeling of Scanning Charged-Particle-Microscopy Images
    Cizmar, Petr
    Vladar, Andras E.
    Postek, Michael T.
    SCANNING MICROSCOPY 2010, 2010, 7729
  • [39] Bivariate Statistical Modeling of Color and Range in Natural Scenes
    Su, Che-Chun
    Cormack, Lawrence K.
    Bovik, Alan C.
    HUMAN VISION AND ELECTRONIC IMAGING XIX, 2014, 9014
  • [40] Individualized Statistical Modeling of Lesions in Fundus Images for Anomaly Detection
    Du, Yuchen
    Wang, Lisheng
    Meng, Deyu
    Chen, Benzhi
    An, Chengyang
    Liu, Hao
    Liu, Weiping
    Xu, Yupeng
    Fan, Ying
    Feng, Dagan
    Wang, Xiuying
    Xu, Xun
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (04) : 1185 - 1196