On advances in statistical modeling of natural images

被引:361
|
作者
Srivastava, A [1 ]
Lee, AB
Simoncelli, EP
Zhu, SC
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[4] Ohio State Univ, Dept Comp Sci, Columbus, OH 43210 USA
关键词
natural image statistics; non-Gaussian models; scale invariance; statistical image analysis; image manifold; generalized Laplacian; Bessel K form;
D O I
10.1023/A:1021889010444
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Statistical analysis of images reveals two interesting properties: (i) invariance of image statistics to scaling of images, and (ii) non-Gaussian behavior of image statistics, i.e. high kurtosis, heavy tails, and sharp central cusps. In this paper we review some recent results in statistical modeling of natural images that attempt to explain these patterns. Two categories of results are considered: (i) studies of probability models of images or image decompositions (such as Fourier or wavelet decompositions), and (ii) discoveries of underlying image manifolds while restricting to natural images. Applications of these models in areas such as texture analysis, image classification, compression, and denoising are also considered.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [21] Multivariate statistical modeling of images with the curvelet transform
    Boubchir, L
    Fadili, MM
    ISSPA 2005: The 8th International Symposium on Signal Processing and its Applications, Vols 1 and 2, Proceedings, 2005, : 747 - 750
  • [22] Modeling occlusion and scaling in natural images
    Gousseau, Yann
    Roueff, Francois
    MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 105 - 134
  • [23] Modeling the Importance of Faces in Natural Images
    Jin, B.
    Yildirim, G.
    Lau, C.
    Shaji, A.
    Segovia, Ortiz M.
    Suesstrunk, S.
    HUMAN VISION AND ELECTRONIC IMAGING XX, 2015, 9394
  • [24] Contour curvature in natural images: Statistical analysis and psychophysics
    Cham, J.
    Khuu, S.
    Hayes, A.
    PERCEPTION, 2007, 36 : 156 - 157
  • [25] STATISTICAL LEARNING OF RATIONAL WAVELET TRANSFORM FOR NATURAL IMAGES
    Ansari, Naushad
    Gupta, Anubha
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4679 - 4683
  • [26] Higher-order statistical redundancy in natural images
    Summers, RJ
    Thomson, MGA
    PERCEPTION, 2004, 33 : 115 - 115
  • [27] Statistical Models of Natural Images and Cortical Visual Representation
    Hyvarinen, Aapo
    TOPICS IN COGNITIVE SCIENCE, 2010, 2 (02) : 251 - 264
  • [28] Temporal coherence and sparseness in the statistical structure of natural images
    Hyvarinen, A
    Hurri, J
    Vayrynen, J
    PERCEPTION, 2003, 32 : 54 - 54
  • [29] The Bayesian approach: a natural framework for statistical modeling
    Van Calster, B.
    Nabney, I.
    Timmerman, D.
    Van Huffel, S.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2007, 29 (05) : 485 - 488
  • [30] Statistical Modeling and Classification of Reflectance Confocal Microscopy Images
    Halimi, Abdelghafour
    Batatia, Hadj
    Le Digabel, Jimmy
    Josse, Gwendal
    Tourneret, Jean-Yves
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,