Static Analysis of Android Malware Detection using Deep Learning

被引:0
|
作者
Sandeep, H. R. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Comp Sci & Engn, Bengaluru, India
来源
PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS) | 2019年
关键词
Android Malware Classification; Malware; Machine learning; Security; Android; Permissions; APK (application package); Deep learning; Data Mining; Data Extraction; Preprocessing; Vector Representation; Behavioral Analysis; Keras; Deep Learning Dense Model; Random Forest Classifier; Virus Share;
D O I
10.1109/iccs45141.2019.9065765
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Android Malware is very common these days as applications are not created by trusted sources. People enter their personal data, save cards and much more, thinking these apps are going to keep them fit or help remind them to do certain essential works which we tend to forget in this busy routine of life. In such cases, detecting the malware before even installing an application would be of great help to us. It could possibly even stop a few crimes. In this paper, we propose to use the fully connected deep learning model for detection of Android malware. Key features of the proposed work include detection of Android malware even before installation, the name of the Android malware, version packages with proven extremely high accuracy of about 94.65%. This model also learns all features from all combinations of features. It includes extensive research and testing to achieve very high accuracy.
引用
收藏
页码:841 / 845
页数:5
相关论文
共 50 条
  • [31] Tuning Deep Learning Performance for Android Malware Detection
    Booz, Jarrett
    McGiff, Josh
    Hatcher, William G.
    Yu, Wei
    Nguyen, James
    Lu, Chao
    2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2018, : 140 - 145
  • [32] Applying deep learning techniques for Android malware detection
    Zegzhda, Peter
    Zegzhda, Dmitry
    Pavlenko, Evgeny
    Ignatev, Gleb
    11TH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS (SIN 2018), 2018,
  • [33] Automated malware detection using machine learning and deep learning approaches for android applications
    Poornima S.
    Mahalakshmi R.
    Measurement: Sensors, 2024, 32
  • [34] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [35] A Multimodal Deep Learning Method for Android Malware Detection Using Various Features
    Kim, TaeGuen
    Kang, BooJoong
    Rho, Mina
    Sezer, Sakir
    Im, Eul Gyu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (03) : 773 - 788
  • [36] Android Malware Detection with Deep Learning using RNN from Opcode Sequences
    Lakshmanarao A.
    Shashi M.
    International Journal of Interactive Mobile Technologies, 2022, 16 (01) : 145 - 157
  • [37] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [38] An Android Malware Detection Approach Using Weight-Adjusted Deep Learning
    Li, Wenjia
    Wang, Zi
    Cai, Juecong
    Cheng, Sihua
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2018, : 437 - 441
  • [39] An Android malware static detection model
    Yang H.-Y.
    Xu J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (02): : 564 - 570
  • [40] Static, Dynamic and Intrinsic Features Based Android Malware Detection Using Machine Learning
    Mantoo, Bilal Ahmad
    Khurana, Surinder Singh
    PROCEEDINGS OF RECENT INNOVATIONS IN COMPUTING, ICRIC 2019, 2020, 597 : 31 - 45