Counterexamples in 4-manifold topology

被引:2
|
作者
Kasprowski, Daniel [1 ]
Powell, Mark [2 ]
Ray, Arunima [3 ]
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, England
[2] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow G12 8QQ, Scotland
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
基金
英国工程与自然科学研究理事会;
关键词
4-manifolds; equivalence relations; SIMPLY-CONNECTED; 4-MANIFOLDS; SURGERY OBSTRUCTION GROUPS; STABLE-HOMOTOPY GROUPS; NONORIENTABLE; FUNDAMENTAL GROUP; GAUGE-THEORY; CLASSIFICATION; TORSION; COMPLEXES; MANIFOLDS;
D O I
10.4171/EMSS/56
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We illustrate the rich landscape of 4-manifold topology through the lens of counterexamples. We consider several of the most commonly studied equivalence relations on 4-manifolds and how they are related to one another. We explain implications e.g. that h-cobordant manifolds are stably homeomorphic, and we provide examples illustrating the failure of other potential implications. The information is conveniently organised in a flowchart and a table.
引用
收藏
页码:193 / 249
页数:57
相关论文
共 50 条
  • [31] Critical Metrics of the Schouten Functional on a 4-manifold
    Zhang, L.F.
    IAENG International Journal of Computer Science, 2023, 50 (01)
  • [32] The G2 sphere of a 4-manifold
    R. Albuquerque
    I. M. C. Salavessa
    Monatshefte für Mathematik, 2009, 158 : 335 - 348
  • [33] THE SPACE OF HYPERKAHLER METRICS ON A 4-MANIFOLD WITH BOUNDARY
    Fine, Joel
    Lotay, Jason D.
    Singer, Michael
    FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [34] ON A 4-MANIFOLD HOMOLOGY EQUIVALENT TO A BOUQUET OF SURFACES
    KAWAUCHI, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 262 (01) : 95 - 112
  • [35] Compactification of a class of conformally flat 4-manifold
    Chang, SYA
    Qing, J
    Yang, PC
    INVENTIONES MATHEMATICAE, 2000, 142 (01) : 65 - 93
  • [36] The G2 sphere of a 4-manifold
    Albuquerque, R.
    Salavessa, I.
    MONATSHEFTE FUR MATHEMATIK, 2010, 160 (01): : 109 - 110
  • [37] An invariant of smooth isotopy for surfaces in a 4-manifold
    Darolles, C
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (10) : 811 - 815
  • [38] Introduction of a Riemannian geometry on a triangulable 4-manifold
    Cairns, SS
    ANNALS OF MATHEMATICS, 1944, 45 : 218 - 219
  • [39] 4-Manifold invariants from Hopf algebras
    Chaidez, Julian
    Cotler, Jordan
    Cui, Shawn X.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (08): : 3747 - 3807
  • [40] Singular maps on exotic 4-manifold pairs
    Kalmar, Boldizsar
    Stipsicz, Andras I.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (03): : 1709 - 1731