Penalized Maximum Likelihood Principle for Choosing Ridge Parameter

被引:7
|
作者
Tran, Minh Ngoc [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[2] Vietnam Natl Univ, Singapore, Singapore
关键词
Data-dependent penalty; Loss rank principle; Model selection; Penalized ML; Ridge parameter; Ridge regression; REGRESSION;
D O I
10.1080/03610910903061014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of choosing the ridge parameter. Two penalized maximum likelihood (PML) criteria based on a distribution-free and a data-dependent penalty function are proposed. These PML criteria can be considered as "continuous" versions of AIC. A systematic simulation is conducted to compare the suggested criteria to several existing methods. The simulation results strongly support the use of our method. The method is also applied to two real data sets.
引用
收藏
页码:1610 / 1624
页数:15
相关论文
共 50 条
  • [21] Maximum Penalized Likelihood Kernel Regression for Fast Adaptation
    Mak, Brian Kan-Wing
    Lai, Tsz-Chung
    Tsang, Ivor W.
    Kwok, James Tin-Yau
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2009, 17 (07): : 1372 - 1381
  • [22] MAXIMUM PENALIZED LIKELIHOOD ESTIMATION FOR THE ENDPOINT AND EXPONENT OF A DISTRIBUTION
    Wang, Fang
    Peng, Liang
    Qi, Yongcheng
    Xu, Meiping
    STATISTICA SINICA, 2019, 29 (01) : 203 - 224
  • [23] Penalized maximum likelihood estimation with l(1) penalty
    Loubes, J-M
    Yan, Y.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 14 (J09): : 35 - 46
  • [24] USING A PENALIZED MAXIMUM LIKELIHOOD MODEL FOR FEATURE SELECTION
    Jalalirad, Amir
    Tjalkens, Tjalling
    2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [25] A penalized maximum likelihood approach to sparse factor analysis
    Choi, Jang
    Zou, Hui
    Oehlert, Gary
    STATISTICS AND ITS INTERFACE, 2010, 3 (04) : 429 - 436
  • [26] Maximum penalized likelihood estimation of interspike interval distribution
    Ondrej Pokora
    Lubomir Kostal
    BMC Neuroscience, 14 (Suppl 1)
  • [27] Regularization parameter selection for penalized empirical likelihood estimator
    Ando, Tomohiro
    Sueishi, Naoya
    ECONOMICS LETTERS, 2019, 178 : 1 - 4
  • [28] Tuning parameter selection in high dimensional penalized likelihood
    Fan, Yingying
    Tang, Cheng Yong
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 531 - 552
  • [29] Usage of Penalized Maximum Likelihood Estimation Method in Medical Research: An Alternative to Maximum Likelihood Estimation Method
    Eyduran, Ecevit
    JOURNAL OF RESEARCH IN MEDICAL SCIENCES, 2008, 13 (06): : 325 - 330
  • [30] CHOOSING THE REGULARIZATION PARAMETER IN RIDGE-REGRESSION
    DEMIDENKO, EZ
    INDUSTRIAL LABORATORY, 1988, 54 (05): : 565 - 571